Taxitaxitaxi.ru

Эволюшн
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Универсальный источник питания

Универсальный источник питания

Универсальный блок питания — незаменимая вещь, которая обязательно должна присутствовать в мастерской любого радиолюбителя. Протестировать только что разработанную схему, проверить попавшееся под руку устройство, зарядить аккумулятор, срочно запитать какой-нибудь медицинский прибор, у которого родной блок питания внезапно вышел из строя или просто сели батарейки.

Да мало ли для его может потребоваться постоянное напряжение. И хорошо бы, чтобы величину этого постоянного напряжения можно было бы в некоторых пределах регулировать, а еще лучше — наличие у блока питания регулировки тока, чтобы по достижении определенной величины тока, напряжение бы больше не повышалось, а удерживалось бы на таком уровне, чтобы заданный ток нагрузки ни в коем случае не оказался бы превышен.

Универсальный источник питания

Описанные потребности в полной мере способен удовлетворить лабораторный блок питания, который по сути и является универсальным источником питания. И не только радиолюбителю, но и любому домашнему мастеру желательно иметь в хозяйстве такой универсальный источник электричества.

Универсальные лабораторные блоки пиатния выпускаются они на различные максимальные ток и напряжение. На лицевой панели такого блока питания, кроме ручек грубой и точной регулировки напряжения и тока, имеются вольтметр и амперметр, а также разъемы для присоединения щупов и кнопка-выключатель. Щупы и сетевой кабель идут в комплекте.

Блоки питания такого плана имеют, как правило, очень нехитрое устройство. Давайте для примера рассмотрим упрощенную схему элементарного лабораторного блока питания, имеющего следующие выходные параметры: постоянное напряжение регулируется в пределах от 0 до 30 В, а ток — от 0 до 5 А. Сетевой трансформатор с выпрямителем, а также вольтметр с амперметром на схеме не показаны.

Исходное постоянное напряжение получается в таких блоках, как правило, путем выпрямления переменного тока, который берется со вторичной обмотки сетевого трансформатора, пропускается через диодный мост и заряжает конденсатор.

Далее это постоянное напряжение, скажем, в районе 35 вольт, подается на схему регулятора напряжения, выполненного на базе микросхемы LM317 – регулируемого интегрального стабилизатора напряжения. Данная трехвыводная микросхема позволяет ограничить выходное напряжение таким образом, чтобы напряжение между ее 2 и 3 выводами сохранялось бы на уровне 1,25 вольт.

Схема универсального блока питания для домашней лаборатории

Поскольку сама микросхема LM317 имеет ограничение по току до 1,5 А, в схеме блока питания присутствует мощный биполярный транзистор MJ2955, и весь рабочий ток, вплоть до 5 ампер, идет именно через него. Внутри корпуса блока питания данный транзистор закреплен на радиаторе значительной площади. А микросхема LM317 включается в цепь базы этого мощного транзистора, и лишь управляет ее током.

Напряжение выхода задается нижним по схеме регулировочным резистором: чем его сопротивление выше — тем меньшее напряжение будет на выходе, ток базы транзистора MJ2955 при этом ограничивается схемой LM317, как только выходное напряжение достигнет установленного нижним резистором значения (см. даташит на LM317).

Операционный усилитель 301A предназначен здесь для защиты выхода блока питания по току: когда установленный ток превышен (его задает верхний по схеме регулировочный резистор), на выходе операционного усилителя появляется отрицательное напряжение, при этом загорается светодиод СИД, а поскольку потенциал 2 вывода микросхемы LM317 из-за этого понижается, выходное напряжение опять же уменьшается (по тому же механизму, как и ограничение напряжения с помощью нижнего по схеме регулировочного резистора), ток базы транзистора MJ2955 снова ограничен микросхемой LM317.

Мощный лабораторный источник питания 0-25В, 7А

Для настройки, ремонта автоэлектронных и радиотехнических устройств или зарядки аккумуляторных батарей необходимо иметь хороший источник питания.

Использование современной схемотехники и элементной базы позволяют сделать в домашних условиях источник питания, по основным техническим характеристикам не уступающий лучшим промышленным образцам.

Основные требования, которым должен удовлетворять такой источник питания:

  • регулировка напряжения в диапазоне 0 — 25 В;
  • способность обеспечить ток в нагрузке до 7 А при минимальных пульсациях;
  • регулировка срабатывания токовой защиты. Кроме того, срабатывание защиты по току должно быть достаточно быстрым, чтобы исключить повреждение самого источника в случае короткого замыкания на выходе.

Возможность плавно регулировать в источнике питания ограничения тока позволяет при настройке внешних устройств исключить их повреждение.

Всем этим требованиям удовлетворяет предлагаемая схема универсального источника питания. Кроме того, данный блок питания позволяет использовать его в качестве источника стабильного тока.

Основные технические характеристики источника питания:

  • плавная регулировка напряжения в диапазоне от 0 до 25 В;
  • напряжение пульсаций, не более 1 мВ;
  • плавная регулировка тока ограничения (защиты) от 0 до 7 А;
  • коэффициент нестабильности по напряжению не хуже 0,001 %/В;
  • коэффициент нестабильности по току не хуже 0,01 %/В;
  • КПД источника не хуже 0,6.

Принципиальная схема

Электрическая схема источника питания, состоит из схемы управления, трансформатора (Т1), выпрямителя (VD4 ч- VD7), силовых регулирующих транзисторов VT3, VT4 и блока коммутации обмоток трансформатора.

Схема управления собрана на двух универсальных операционных усилителях (ОУ), расположенных в одном корпусе, и питается от отдельного трансформатора Т2. Это обеспечивает регулировку выходного напряжения от нуля, а также более стабильную работу всего устройства.

Для облегчения теплового режима работы силовых регулирующих транзисторов применен трансформатор с секционной вторичной обмоткой. Отводы автоматически переключаются в зависимости от уровня выходного напряжения при помощи реле К1, К2. Что позволяет, несмотря на большой ток в нагрузке, применить теплоотвод для VT3 и VT4 сравнительно небольших размеров, а также повысить КПД стабилизатора.

Блок коммутации предназначен для того, чтобы при помощи всего двух реле обеспечить переключение четырех отводов трансформатора, выполняет их включение в следующей последовательности: при превышении выходного напряжения уровня 6,2 В — включается К2; при превышения уровня 15,3 В включается К1(в этом случае с обмоток трансформатора поступает максимальное напряжение). Указанные пороги задаются используемыми стабилитронами (VD10, VD12). Отключение реле при снижении напряжения выполняется в обратной последовательности, но с гистерезисом примерно 0,3 В, т. е. когда напряжение снизится на это значение ниже чем при включении, что исключает дребезг при переключении обмоток.

Схема управления состоит из стабилизатора напряжения и стабилизатора тока. При необходимости устройство может работать в любом из этих режимов. Режим зависит от сопротивления регуляторов «I» (R21,R22).

Стабилизатор напряжения собран на элементах DA3, VT5, VT6.

Мощный лабораторный источник питания 0-25В, 7А, схема

Мощный лабораторный источник питания 0-25В, 7А, схема

Рис. 1. Принципиальная схема лабораторного источника питания с регулировкой тока ограничения.

Работает схема стабилизатора следующим образом. Нужное выходное напряжение устанавливается резисторами «грубо» (R9) и «точно» (R10). В режиме стабилизации напряжения сигнал обратной связи по напряжению (-Uoc) с выхода (Х2) через делитель из резисторов R9, RIO, R11 поступает на неинвертирующий вход 2 операционного усилителя DA3.

На этот же вход через резисторы R3, R5, R7 подается опорное напряжение +9 вольт. В момент включения схемы на выходе 12 DA3.1 будет увеличиваться положительное напряжение (оно через транзистор VT5 приходит на управление VT4) до тех пор, пока напряжение на выходных клеммах XI и Х2 не достигнет установленного резисторами R9, R10 уровня. За счет отрицательной обратной связи по напряжению, поступающей с выхода Х2 на вход 2 усилителя DA3.1, выполняется стабилизация выходного напряжения источника питания.

При этом выходное напряжение будет определяться соотношением:

Мощный лабораторный источник питания 0-25В, 7А, схема

Соответственно изменяя сопротивление резисторов R9 «грубо» и R10 «точно», можно менять выходное напряжение (Uвых) от 0 до 25 В.

Когда к выходу источника питания подключена нагрузка, в его выходной цепи начинает протекать ток, создающий положительное падение напряжения на резисторе R23 (относительно общего провода схемы). Это напряжение поступает через резистор R21, R22 в точку соединения R8, R12. Со стабилитрона VD9 через R6, R8 подается опорное отрицательное напряжение — 9 вольт.

Операционный усилитель DA3.2 усиливает разность между ними. Пока разность отрицательная (т. е. выходной ток меньше установленной резисторами R23, R24 величины), на выходе 10 DA3.2 действует + 15 В. Транзистор VT6 будет закрыт и эта часть схемы не оказывает влияния на работу стабилизатора напряжения.

При увеличении тока нагрузки до величины, при которой на входе 7 DA3.2 появится положительное напряжение, на выходе 10 DA3.2 будет отрицательное напряжение и транзистор VT6 приоткроется. В цепи R16, R17, HL1 будет протекать ток, который уменьшит открывающее напряжение на базе регулирующего силового транзистора VT4.

Свечение красного светодиода (HL1) сигнализирует о переходе схемы в режим ограничения тока. В этом случае выходное напряжение источника питания снизится до такой величины, при которой выходной ток будет иметь значение, достаточное для того, чтобы напряжение обратной связи по току (Uoc), снимаемое с резистора R10, и опорное в точке соединения R8, R12, R22 взаимно компенсировались, т. е. появился нулевой потенциал. В результате выходной ток источника окажется ограниченным на уровне, задаваемым положением движка резисторов R21, R22. При этом ток в выходной цепи будет определяться соотношением:

Мощный лабораторный источник питания 0-25В, 7А, схема

Диоды (VD11) на входах операционных усилителей обеспечивают защиту микросхемы от повреждения в случае включения её без обратной связи или при повреждении силового транзистора. В рабочем режиме напряжение на входах ОУ близко к нулю и диоды не оказывают влияния на работу устройства.

Конденсатор С8 ограничивает полосу усиливаемых частот ОУ, что предотвращает самовозбуждение и повышает устойчивость работы схемы.

Настройка

При безошибочном монтаже в схеме узла управления потребуется настроить только максимум диапазона регулировки выходного напряжения 0 : 25 В резисторомR7 и максимальный ток защиты 7 А — резистором R8.

Блок коммутации в настройке не нуждается. Необходимо только проверить пороги переключения реле К1, К2 и соответствующее увеличение напряжения на конденсаторе С3.

При работе схемы в режиме стабилизации напряжения светится зеленый светодиод (HL2), а при переходе в режим стабилизации тока — красный (HL1).

Детали

Подстроечные резисторы R7 и R8 — типа СПЗ-19а; переменные резисторы R9, R10, R21, R22 — типа СПЗ-4а или ППБ-1 А; постоянные резисторы R23 — типа С5-16МВ на 5 Вт, остальные из серии МЛТ или С2-23 соответствующей мощности.

Конденсаторы С6, С7, С8, СЮ типа КІО-17, электролитические С1 — С5, С9 типа К50-35 (К50-32).

Микросхема DA1 может быть заменена импортным аналогом 78L15; DA2 — на 79L15; DA3 на рА747 или двумя микросхемами 140УД7.

Светодиоды HL1, HL2 подойдут любые с разным цветом свечения.

Силовые транзисторы устанавливаются на радиатор площадью около 1000 см^2.

Два силовых транзистора устанавливается параллельно для обеспечения надёжной работы устройства в случае короткого замыкания на выходных клеммах.

В наихудшем случае силовые транзисторы кратковременно должны выдерживать перегрузку по мощности Р = Ubx*I = 25×7= 175 Вт. А один транзистор КТ827А может рассеивать мощность не более 125 Вт.

Диоды VD4 — VD7 надо установить на небольшой радиатор.

Реле К1, К2 применены типоразмера R-15 (польского производства) с обмоткой на рабочее напряжение 24 В (сопротивление обмотки 430 Ом) — они за счет бескорпусного исполнения имеют малые габариты и достаточно мощные переключающие контакты. Можно использовать и отечественные реле типа РЭН29 (0001), РЭН32 (0201).

Переключающие напряжение с трансформатора Т1 реле К1 и К2 инерционны и не обеспечивают мгновенное снижение напряжения, приходящего со вторичной обмотки Т1, но они уменьшат тепловую рассеиваемую мощность на силовых транзисторах при длительной работе источника.

Микроамперметр РА1 малогабаритный типа М42303 или аналогичный с внутренним шунтом на ток до 10 А. Для удобства эксплуатации источника питания схему можно дополнить вольтметром, показывающим выходное напряжение.

В качестве сетевого трансформатора Т1 используется промышленный трансформатор типа ТППЗ19-127/220-50. Т2 — типа ТПП259-127/220-50.

Трансформатор можно изготовить и самостоятельно на основе промышленного трансформатора мощностью 200 Вт, намотав все обмотки (Т1 и Т2) на одном трансформаторе.

Источник: Ходасевич А. Г, Ходасевич Т. И., Зарядные и пуско-зарядные устройства, Выпуск 2.

ПРИМЕНЕНИЕ И УСТРОЙСТВО БЛОКОВ ПИТАНИЯ

Универсальные и лабораторные блоки питания

В общем случае любой блок питания (БП) это прибор, который при подключении к электрической сети формирует необходимые для дальнейшего использования напряжение и ток.

Чаще всего такие устройства преобразуют переменный ток электрической сети общего пользования (

220В, частота 50 Гц.) в постоянный.

  • трансформаторные (линейные);
  • импульсные.
  • стабилизированными;
  • нестабилизированными.
  • понижающий трансформатор с первичной обмоткой, рассчитанной на сетевое напряжение;
  • двухполупериодный выпрямитель, с помощью которого напряжение переменного тока преобразуется в постоянное (пульсирующее);
  • конденсатор большой емкости, сглаживающий пульсации.

В таких блоках питания номинальные значения выходных параметров (напряжение, ток) обеспечиваются только при нормальных значениях входных электрических параметров и тока, потребляемого нагрузкой. Используются они для работы с устройствами, оснащенными собственными стабилизаторами.

В импульсных блоках питания переменное напряжение выпрямляется, а затем преобразуется в высокочастотные импульсы прямоугольной формы и заданной скважности.

Стабилизация в них обеспечивается применением отрицательной обратной связи, которая может быть организована как с помощью гальванической развязки от питающей цепи (трансформатор), так и путем подачи импульсов на фильтр низкой частоты.

В зависимости от колебаний сигнала обратной связи регулируется скважность выходных импульсов и таким образом поддерживается стабильность выходного напряжения.

  • до 5А применяют линейные БП;
  • свыше 5А используют импульсные БП.
  1. Высокий коэффициент полезного действия (КПД), достигающий в некоторых случаях 98%.
  2. Небольшой вес, что связано с уменьшением размеров трансформаторов при использовании токов высокой частоты.
  3. Широкий диапазон питающего напряжения и частоты.
  4. Наличие большого количества встроенных элементов защиты и др.

Оба вида блоков в широком ассортименте представлены на отечественном рынке радиоэлектронной аппаратуры (РЭА). При этом большой популярностью пользуются универсальные БП, которыми оснащаются рабочие места работников предприятий, специализирующихся на производстве или ремонте РЭА. Имеются они и у каждого радиолюбителя.

УНИВЕРСАЛЬНЫЕ БЛОКИ ПИТАНИЯ

Универсальный БП — это надежный источник электропитания, обладающий стабильными выходными параметрами и имеющий двойной запас по мощности. На его передней панели в общем случае должны размещаться:

1. Стрелочные и цифровые измерительные приборы (вольтметр, амперметр). При этом: стрелочный даст возможность оценить динамические изменения контролируемых параметров; цифровой позволит с высокой точностью контролировать выходные характеристики БП.

2. Органы управления, с помощью которых регулируют выходные параметры в режимах «грубо» и «точно», индикатор режима работы, тумблер или клавишный выключатель питающей электросети.

Теоретически возможно, но практически нецелесообразно разработать и изготовить универсальный блок питания, который подойдет, как говорят, «на все случаи жизни». Такое устройство будет иметь огромные размеры и вес, а его стоимость превысит все допустимые пределы.

Поэтому современные универсальные источники вторичного напряжения классифицируются по мощности, по номинальному значению выходного напряжения и по количеству выходов питающего напряжения. Исходя из этих градаций и осуществляют выбор необходимого прибора.

  • низковольтные до 100 В;
  • средневольтные до 1000 В;
  • высоковольтные свыше 1000 В.
  • микромощные, выходная мощность которых не превышает 1 Вт;
  • малой мощности от 1 до 10 Вт;
  • средней мощности 10. 100 Вт;
  • повышенной (от 100 до 1000 Вт) и высокой (свыше 1000 Вт) мощности.

Блок питания с регулировкой.

Одним из самых простых универсальных источников электропитания является регулируемый. Например, для начинающих радиолюбителей таким устройством может быть блок питания с током нагрузки в несколько ампер и позволяющий регулировать выходное напряжение в пределах от 1 до 36 В.

К нему можно подключить не только радиотехническое устройство или электродвигатель, но и автомобильный аккумулятор для зарядки.

В основе электрической схемы такого блока питания лежит мощный силовой трансформатор, а на выходе устанавливается мощный транзистор, установленный на теплоотводящий радиатор. Управляет транзистором специальная микросхема. Имеющиеся низкочастотные пульсации и высокочастотные шумы сглаживаются электролитическими конденсаторами большой емкости.

ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

Лабораторный блок питания ни что иное как высококачественный универсальный источник питания с нормированными и термостабильными характеристиками. Эти устройства имеются на любом предприятии, которое занимается разработкой, изготовлением или ремонтом и/или ремонтом радиоэлектронной аппаратуры.

Используют их во время проверки и/или калибровки различных приборов. Кроме того они необходимы в тех случаях, когда нужно с высокой точностью подать питающее напряжение и ток на радиотехническое устройство.

Как правило, лабораторные блоки питания оснащаются всевозможными устройствами защиты (перегрузка, защита от короткого замыкания и пр.) и органами регулировки выходных параметров (напряжение и ток).

Серийно выпускаемые лабораторные источники питания могут быть как линейными, так и импульсными.

Линейные лабораторные БП строятся на базе больших низкочастотных трансформаторов, которые понижают сетевое напряжение

220 В частотой 50 Гц до определенного значения. Частота переменного тока при этом остается без изменений. Затем синусоидальное напряжение выпрямляется, сглаживается емкостными фильтрами и доводится до заданного значения линейным полупроводниковым стабилизатором.

  • большие габаритные размеры и вес, который может быть больше 20 кг. Из-за этого мощность на нагрузке у таких БП редко превышает 200 Вт.;
  • низкий КПД (не более 60%), что обусловлено принципом работы линейного стабилизатора, где все избыточное напряжение преобразуется в тепло;
  • наличие высокочастотных помех, проникающих из сети

В основу работы импульсных лабораторных блоков питания положен принцип заряда сглаживающих конденсаторов импульсным током. Он образуется в момент подключения/отключения индуктивного элемента. Переключение происходит под действием специально оптимизированных транзисторов, а выходное напряжение регулируется путем изменения глубины широтно импульсной модуляции (ШИМ).

  • плавного изменения глубины ШИМ, что в свою очередь, позволяет закачивать в сглаживающие конденсаторы такое количество энергии, которое соизмеримо с энергопотреблением нагрузки БП. При этом КПД блока питания может достигать 90 и более процентов;
  • высокочастотной составляющей, которая дает возможность использования сглаживающих конденсаторов значительно небольшой емкости.

За счет этого габаритные размеры корпуса невелики. Кроме того, за счет более высокого КПД значительно уменьшается выделение тепла и улучшается температурный режим работы источника питания.

  • высокочастотные пульсации на выходе, которые достаточно тяжело отфильтровать;
  • радиочастотные наводки и их гармоники, вызванные периодическими токовыми импульсами.
  • стандартные, мощностью до 700 Вт. Их максимальный вес не превышает 15 кг.;
  • большой мощности.

Стандартные исполнения могут быть как трансформаторными, так и импульсными. Предназначены они для работы с напряжениями в диапазоне от 15 до 150 В. При этом максимальный ток ограничивается величиной порядка 25 А. Как правило, они имеют от одного до трех каналов, из которых два являются регулируемыми.

© 2012-2021 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Блоки питания универсальные (с дискретной регулировкой напряжения)

Блоки питания с дискретным регулированием значения выходного напряжения предназначены для питания потребителей — электронных приборов самого широкого назначения. Благодаря своей универсальности такие адаптеры находят применение там, где часто меняются параметры подключаемых аппаратов. Примером применения универсальных блоков питания могут служить мастерские по ремонту различной электрической техники, когда для проверки и настройки каждого отдельного изделия нужны особые блоки питания, а применение универсального бп позволяет избежать ненужных затрат.

Выходные параметры универсальных сетевых блоков питания позволяют использовать их для подключения в диапазоне, практически, всех, применяемых в современной технике напряжений от 1,5 В до 36 В (обычно применяется не весь диапазон напряжений, а различные его наборы для удешевления и снижения габаритов изделий). Значения напряжения изменяются путем ручного переключателя дискретного (ступенчатого) типа. Надо помнить, что выходные параметры по допустимому максимальному току при увеличении напряжения выхода универсального сетевого адаптера изменяются в сторону уменьшения, при этом мощность устройства остается неизменной. Также для придания большего диапазона в использовании адаптеры универсальные дискретного типа снабжаются дополнительно набором сменных разъемов (в соответствии со стандартами самых распространенных фирм-производителей электронной техники). Есть еще возможность изменения полярности внутреннего и внешнего контактов таких разъемов.

Выбор универсальных адаптеров питания с дискретной регулировкой напряжения может быть проведен между импульсными блоками питания и блоками питания трансформаторного типа. Они принципиально отличаются между собой по внутреннему устройству. Трансформаторные адаптеры построены по классической схеме трансформатор — выпрямитель — фильтр, ступенчатая регулировка на выходе ведется ручным переключением ответвлений обмотки трансформатора. Купить универсальный блок питания такого типа можно недорого, конструктивно они просты и надежны, могут длительно работать в сети без отключения и повреждений. Один их недостаток — большой вес и габариты, что не является помехой, если устройство стационарное, но для переносных приборов создается большое неудобство. В этом случае применяются импульсные блоки питания, в которых реализована схема первичного выпрямления напряжения, передачи его на импульсный трансформатор конвертера для понижения и последующего вторичного выпрямления.

Габариты таких адаптеров минимальны при той же номинальной мощности, они дают неплохие характеристики работы, но подвержены большей опасности внутреннего замыкания из-за отсутствия гальванической развязки с первичной сетью. Оба типа представленных простых регулируемых блоков питания имеют модификации со стабилизированием выходного напряжения, когда требуется особое соблюдение его величины. Вышеизложенные замечания рекомендуется учесть при подборе изделий для покупки в нашем магазине, чтобы они работали долго и надежно.

голоса
Рейтинг статьи
Читайте так же:
Регулировка шкворней на ниве
Ссылка на основную публикацию
Adblock
detector