Taxitaxitaxi.ru

Эволюшн
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тиристор для чайников: схема включения и способы управления

Тиристор для чайников: схема включения и способы управления

Схема подключения ку202

Тиристор — электронный компонент, изготовленный на основе полупроводниковых материалов, может состоять из трёх или более p-n-переходов и имеет два устойчивых состояния: закрытое (низкая проводимость), открытое (высокая проводимость).

Это сухая формулировка, которая для тех, кто только начинает осваивать электротехнику, абсолютно ни о чём не говорит. Давайте разберём принцип работы этого электронного компонента для обычных людей, так сказать, для чайников, и где его можно применить. По сути, это электронный аналог выключателей, которыми вы каждый день пользуетес

Есть много типов этих элементов, обладающие различными характеристиками и имеющие различные области применения. Рассмотрим обычный однооперационный тиристор.

Способ обозначения на схемах показан на рисунке 1.

Электронный элемент имеет следующие выводы:

  • анод — положительный вывод;
  • катод — отрицательный вывод;
  • управляющий электрод G.

Принцип действия тиристора

Обозначение тиристора

Основное применение этого типа элементов — это создание на их основе силовых тиристорных ключей для коммутации больших токов и их регулирования. Включение выполняется сигналом, переданным на управляющий электрод. При этом элемент является не полностью управляемым, и для его закрытия необходимо применение дополнительных мер, которые обеспечат падение величины напряжения до нуля.

Если говорить, как работает тиристор простым языком, то он, по аналогии с диодом, может проводить ток только в одном направлении, поэтому при его подключении нужно соблюдать правильную полярность. При подаче напряжения к аноду и катоду этот элемент будет оставаться закрытым до момента, когда на управляющий электрод будет подан соответствующий электрический сигнал. Теперь, независимо от наличия или отсутствия управляющего сигнала, он не изменит своего состояния и останется открытым.

Условия закрытия тиристора:

  1. Снять сигнал с управляющего электрода;
  2. Снизить до нуля напряжение на катоде и аноде.

Для сетей переменного тока выполнение этих условий не вызывает особых трудностей. Синусоидальное напряжение, изменяясь от одного амплитудного значения до другого, снижается до нулевой величины, и если в этот момент управляющего сигнала нет, то тиристор закроется.

В случае использования тиристоров в схемах постоянного тока для принудительной коммутации (закрытия тиристора) используют ряд способов, наиболее распространённым является использование конденсатора, который был предварительно заряжен. Цепь с конденсатором подключается к схеме управления тиристором. При подключении конденсатора в цепь произойдёт разряд на тиристор, ток разряда конденсатора будет направлен встречно прямому току тиристора, что приведёт к уменьшению тока в цепи до нулевого значения и тиристор закроется.

Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ? Огромным плюсом тиристора является то, что он позволяет коммутировать огромные токи в цепи анода-катода при помощи ничтожно малого управляющего сигнала, поданного в цепь управления. При этом не возникает искрения, что немаловажно для надёжности и безопасности всей схемы.

Схема включения

Схема тиристорного ключа

Схема управления может выглядеть по-разному, но в простейшем случае схема включения тиристорного ключа имеет вид, показанный на рисунке 2.

К аноду присоединена лампочка L, а к ней выключателем К2 подключается плюсовая клемма источника питания G. B. Катод соединяется с минусом питания.

После подачи питания выключателем К2 к аноду и катоду будет приложено напряжение батареи, но тиристор остаётся закрытым, лампочка не светится. Для того чтобы включить лампу, необходимо нажать на кнопку К1, сигнал через сопротивление R будет подан на управляющий электрод, тиристорный ключ изменит своё состояние на открытое, и лампочка загорится. Сопротивление ограничивает ток, подаваемый на управляющий электрод. Повторное нажатие на кнопку К1 никакого влияния на состояние схемы не оказывает.

Для закрытия электронного ключа нужно отключить схему от источника питания выключателем К2. Этот тип электронных компонентов закроется, и в случае снижения напряжения питания на аноде до определённой величины, которая зависит от его характеристик. Вот так можно описать, как работает тиристор для чайников.

Характеристики

К основным характеристикам можно отнести следующие:

    Максимально допустимый прямой ток — наибольшая возможная величина тока открытого элемента;
  • Максимально допустимый обратный ток — ток при максимальном обратном напряжении;
  • Прямое напряжение — падение величины напряжения при максимальном токе;
  • Обратное напряжение— наибольшая допустимая величина напряжения в закрытом состоянии;
  • Напряжение включения — наименьшее напряжение при котором сохраняется работоспособность электронного устройства;
  • Минимальный и максимальный ток управляющего электрода;
  • Максимально допустимая рассеиваемая мощность.

Рассматриваемые элементы, кроме электронных ключей, часто применяются в регуляторах мощности, которые позволяют изменять подводимую к нагрузке мощность за счёт изменения среднего и действующего значений переменного тока. Величина тока регулируется изменением момента подачи на тиристор открывающего сигнала (за счёт варьирования угла открывания). Углом открытия (регулирования) называется время от начала полупериода до момента открытия тиристора.

Типы данных электронных компонентов

Существует немало различных типов тиристоров, но наиболее распространены, помимо тех что мы рассмотрели выше, следующие:

  • динистор — элемент, коммутация которого происходит при достижении определённого значения величины напряжения, приложенного между анодом и катодом;
  • симистор;
  • оптотиристор, коммутация которого осуществляется световым сигналом.

Симисторы

Условное обозначение симистора

Хотелось бы более подробно остановиться на симисторах. Как говорилось ранее, тиристоры могут проводить ток только в одном направлении, поэтому при установке их в цепи переменного тока, такая схема регулирует один полупериод сетевого напряжения. Для регулирования обоих полупериодов необходимо установить встречно-параллельно ещё один тиристор либо применить специальные схемы с использованием мощных диодов или диодных мостов. Все это усложняет схему, делает её громоздкой и ненадёжной.

Читайте так же:
Регулировка сцепления трактора дт75

Вот для таких случаев и был изобретён симистор. Поговорим о нем и о принципе работы для чайников. Главное отличие симисторов от рассмотренных выше элементов заключается в способности пропускать ток в обоих направлениях. По сути, это два тиристора с общим управлением, подключённые встречно-параллельно (рисунок. 3 А).

Условное графическое обозначение этого электронного компонента показано на Рис. 3 В. Следует заметить, что называть силовые выводы анодом и катодом будет не корректно, так как ток может проводиться в любом направлении, поэтому их обозначают Т1 и Т2. Управляющий электрод обозначается G. Для того чтобы открыть симистор, необходимо подать управляющий сигнал на соответствующий вывод. Условия для перехода симистора из одного состояния в другое и обратно в сетях переменного тока не отличаются от способов управления, рассмотренных выше.

Применяется этот тип электронных компонентов в производственной сфере, бытовых устройствах и электроинструментах для плавного регулирования тока. Это управление электродвигателями, нагревательными элементами, зарядными устройствами.

В завершение хотелось бы сказать, что и тиристоры и симисторы, коммутируя значительные токи, обладают весьма скромными размерами, при этом на их корпусе выделяется значительная тепловая мощность. Проще говоря, они сильно греются, поэтому для защиты элементов от перегрева и теплового пробоя используют теплоотвод, который в простейшем случае представляет собой алюминиевый радиатор.

Тиристорные регуляторы напряжения

Тиристорные регуляторы напряженияТиристорные регуляторы напряжения представляют собой устройства, предназначенные для регулирования частоты вращения и момента электродвигателей. Регулирование частоты вращения и момента производится за счет изменения напряжения, подводимого к статору двигателя, и осуществляется изменением угла открытия тиристоров. Такой способ управления электродвигателем получил название фазового управления. Этот способ является разновидностью параметрического (амплитудного) управления.

Тиристорные регуляторы напряжения могут выполняться как с замкнутой, так и с разомкнутой системой регулирования. Регуляторы с разомкнутой системой не обеспечивают удовлетворительного качества процесса регулирования частоты вращения. Основное их назначение— регулирование момента для получения нужного режима работы привода в динамических процессах.

Упрощенная схема тиристорного регулятора напряжения

Упрощенная схема тиристорного регулятора напряжения

В силовую часть однофазного тиристорного регулятора напряжения включены два управляемых тиристора, которые обеспечивают протекание электрического тока на на1рузке в двух направлениях при синусоидальном напряжении на входе.

Тиристорные регуляторы с замкнутой системой регулирования используются, как правило, с отрицательной обратной связью по скорости, что позволяет иметь достаточно жесткие механические характеристики привода в зоне малых частот вращения.

Наиболее эффективно использование тиристорных регуляторов для регулирования частоты вращения и момента асинхронных двигателей с фазным ротором.

Силовые цепи тиристорных регуляторов

На рис. 1, а—д показаны возможные схемы включения выпрямительных элементов регулятора в одной фазе. Наиболее распространенной из них является схема на рис1,а. Она может быть использована при любой схеме соединения обмоток статора. Допустимый ток через нагрузку (действующее значение) в этой схеме в режиме непрерывного тока равен:

где I т — допустимое среднее значение тока через тиристор.

Максимальное прямое и обратное напряжения тиристора

где k зап — коэффициент запаса, выбираемый с учетом возможных коммутационных перенапряжений в схеме; — действующее значение линейного напряжения сети.

Схемы силовых цепей тиристорных регуляторов напряжения

Рис. 1. Схемы силовых цепей тиристорных регуляторов напряжения.

В схеме на рис. 1,б имеется только один тиристор, включенный в диагональ моста из неуправляемых диодов. Соотношение между токами нагрузки и тиристора для этой схемы имеет вид:

Неуправляемые диоды выбираются на ток вдвое меньший, чем для тиристора. Максимальное прямое напряжение на тиристоре

Обратное напряжение на тиристоре близко к нулю.

Схема на рис. 1,б имеет некоторые отличия от схемы на рис. 1,а по построению системы управления. В схеме на рис. 1, а управляющие импульсы на каждый из тиристоров должны следовать с частотой питающей сети. В схеме на рис. 1,б частота импульсов управления вдвое больше.

Схема на рис. 1, в, состоящая из двух тиристоров и двух диодов, по возможности управления, загрузке, по току и максимальному прямому напряжению тиристоров аналогична схеме на рис. 1, а.

Обратное напряжение в этой схеме из-за шунтирующего действия диода близко к нулю.

Схема на рис. 1, г по току и максимальному прямому и обратному напряжению тиристоров аналогична схеме на рис. 1, а. Схема на рис. 1, г отличается от рассмотренных требованиями к системе управления по обеспечению необходимого диапазона изменения угла регулирования тиристоров. Если угол отсчитывать от нуля фазного напряжения, то для схем на рис. 1, а—в справедливо соотношение

где φ — фазовый угол нагрузки.

Для схемы на рис. 1, г аналогичное соотношение приобретает вид:

Необходимость увеличения диапазона изменения угла усложняет систему управления тиристорами. Схема на рис. 1, г может быть применена при включении обмоток статора в звезду без нулевого провода и в треугольник с включением выпрямительных элементов в линейные провода. Область применения указанной схемы ограничена нереверсивными, а также реверсивными электроприводами с контактным реверсом.

Схема на рис. 4-1, д по своим свойствам аналогична схеме на рис. 1, а. Ток симистора здесь равен току нагрузки, а частота импульсов управления равна двойной частоте питающего напряжения. Недостаток схемы на симисторах — значительно меньше, чем у обычных тиристоров, допустимые значения du/dt и di/dt .

Читайте так же:
Регулировка форсунок на shantui

Для тиристорных регуляторов наиболее рациональна схема на рис. 1, а с двумя встречно-параллельно включенными тиристорами.

Силовые схемы регуляторов выполняются с встречно-параллельно включенными тиристорами во всех трех фазах (симметричная трехфазная схема), в двух и одной фазах двигателя, как показано на рис. 1, е, ж и з соответственно.

В регуляторах, применяемых в крановых электроприводах, наибольшее распространение получила симметричная схема включения, показанная на рис. 1, е, которая характеризуется наименьшими потерями от высших гармонических токов. Более высокие значения потерь в схемах с четырьмя и двумя тиристорами определяются несимметрией напряжения в фазах двигателя.

Основные технические данные тиристорных регуляторов серии РСТ

Тиристорные регуляторы серии РСТ представляют собой устройства для изменения (по заданному закону) напряжения, подводимого к статору асинхронного двигателя с фазным ротором. Тиристорные регуляторы серии РСТ выполняются по симметричной трехфазной схеме включения (рис. 1, е). Применение регуляторов указанной серии в крановых электроприводах позволяет осуществлять регулирование частоты вращения в диапазоне 10:1 и регулирование момента двигателя в динамических режимах при пуске и торможении.

Тиристорные регуляторы серии РСТ выполняются на длительные токи 100, 160 и 320 А (максимальные токи соответственно 200, 320 и 640 А) и напряжение 220 и 380 В переменного тока. Регулятор представляет собой собранные на общей раме три силовых блока (по числу фаз встречно-параллельно включенных тиристоров), блок датчиков тока и блок автоматики. В силовых блоках используются таблеточные тиристоры с охладителями из тянутого алюминиевого профиля. Охлаждение воздушное — естественное. Блок автоматики — единый для всех исполнений регуляторов.

Тиристорные регуляторы выполнены со степенью защиты IP00 и предназначены для установки на стандартные рамы магнитных контроллеров типа ТТЗ, которые по конструкции аналогичны контроллерам серий ТА и ТСА. Габаритные размеры и масса регуляторов серии РСТ указаны в табл. 1.

Таблица 1 Габаритные размеры и масса регуляторов напряжения серии РСТ

В магнитных контроллерах ТТЗ установлены контакторы направления для реверсирования двигателя, контакторы роторной цепи и другие релейно-контактные элементы электропривода, осуществляющие связь командоконтроллера с тиристорным регулятором. Структура построения системы управления регулятора видна из функциональной схемы электропривода, показанной на рис. 2.

Трехфазный симметричный тиристорный блок Т управляется системой фазового управления СФУ. С помощью командоконтроллера КК в регуляторе производится изменение задания скорости БЗС, Через блок БЗС в функции времени осуществляется управление контактором ускорения КУ2 в цепи ротора. Разность сигналов задания и тахогенератора ТГ усиливается усилителями У1 и УЗ. К выходу усилителя УЗ подключено логическое релейное устройство, имеющее два устойчивых состояния: одно соответствует включению контактора направления вперед KB, второе — включению контактора направления назад КН.

Одновременно с изменением состояния логического устройства реверсируется сигнал в цепи управления РУ. Сигнал с согласующего усилителя У2 суммируется с сигналом задержанной обратной связи по току статора двигателя, который поступает с блока токоограничения ТО и подается на вход СФУ.

На блок логики БЛ воздействует также сигнал с блока датчиков тока ДТ и блока наличия тока НТ, запрещающий переключение контакторов направления под током. Блоком БЛ осуществляется также нелинейная коррекция системы стабилизации частоты вращения для обеспечения устойчивости работы привода. Регуляторы могут быть использованы в электроприводах механизмов подъема и передвижения.

Регуляторы серии РСТ выполнены с системой ограничения тока. Уровень токоограничения для защиты тиристоров от перегрузок и для ограничения момента двигателя в динамических режимах плавно изменяется от 0,65 до 1,5 номинального тока регулятора, уровень токоограничения для максимально-токовой защиты— от 0,9 до. 2,0 номинального тока регулятора. Широкий диапазон изменения уставок защиты обеспечивает работу регулятора одного типоразмера с двигателями, отличающимися по мощности примерно в 2 раза.

Функциональная схема электропривода с тиристорным регулятором типа РСТ

Рис. 2. Функциональная схема электропривода с тиристорным регулятором типа РСТ: КК — командоконтроллер; ТГ — тахогенератор; КН, KB — контакторы направления; БЗС — блок задания скорости; БЛ — блок логики; У1, У2. УЗ — усилители; СФУ— система фазового управления; ДТ — датчик тока; ИТ — блок наличия тока; ТО — блок токоограничения; МТ — блок защиты; КУ1, КУ2 — контакторы ускорения; КЛ — линейный контактор: Р — рубильник.

Тиристорный регулятор напряжения РСТ

Рис. 3. Тиристорный регулятор напряжения РСТ

Чувствительность системы наличия тока составляет 5—10 А действующего значения тока в фазе. В регуляторе предусмотрены также защиты: нулевая, от коммутационных перенапряжений, от исчезновения тока хотя бы в одной из фаз (блоки ИТ и МТ), от помех радиоприему. Быстродействующими плавкими предохранителями типа ПНБ 5М осуществляется защита от токов короткого замыкания.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Схема включения тиристора для регулировки тока

Тиристоры часто используются в устройствах плавного регулирования мощности таких активных нагрузок, как нагревательные элементы (для управления температурой нагревателя); коллекторные двигатели (для изменения скорости вращения); лампы накаливания (для изменения яркости свечения и цветовой температуры, а также для плавного включения с целью увеличения срока службы). Несмотря на присущие тиристорным регуляторам недостатки (несинусоидальность выходного напряжения; высокий уровень помех), они имеют простое устройство и низкую стоимость. Лучшие показатели могут быть получены в устройствах регулировки с ШИМ с ключами на транзисторах. Но для работы с сопоставимыми по мощности нагрузками, потребуется несопоставимо более сложная схема, содержащая ключевой транзистор, цена которого на данный момент в несколько раз превышает цену тиристора, способного управлять аналогичной нагрузкой.

Читайте так же:
Регулировка подачи топлива ока
Принцип действия регулятора мощности

Структурная схема тиристорного регулятора мощности.

Рис. %img:i1

Основная идея тиристорного управления мощностью в цепи переменного тока состоит в том, что в каждом периоде питающего переменного тока, тиристор находится в открытом (проводящем) состоянии только часть времени. Ток через нагрузку течёт только при открытом тиристоре и, средняя за период мощность оказывается тем меньше, чем меньшую часть периода тиристор открыт. Открывается тиристор импульсом на управляющем электроде, который подаётся с задержкой относительно начала периода (за начало периода принимаем начало положительной полуволны питающего напряжения). Величина задержки как раз определяет, какую часть периода тиристор будет находиться в открытом состоянии, а значит и среднюю мощность нагрузки. Большинство используемых типов тиристоров являются незапираемыми, т.е. с помощью управляющего вывода их можно только открыть; в закрытое состояние они переходят при приложении обратного напряжения между анодом и катодом или уменьшении прямого тока ниже определённого уровня. Это может произойти, например, при переходе питающего напряжения через нулевое значение. То есть, в данном случае, закрывается тиристор сам, в конце полупериода. На протяжении тех полупериодов, когда тиристор смещён в обратном направлении, он всё время находится в закрытом состоянии (предполагается использование триодного тиристора, не проводящего в обратном направлении — это наиболее распространённый тип тиристоров).

Диаграммы работы тиристорного регулятора мощности.

Рис. %img:i2

На рис. %img:i2 изображены временные диаграммы, поясняющие процессы в тиристорном регуляторе мощности. Зелёным пунктиром показан график питающего напряжения; красной линией — график напряжения на нагрузке. Ниже (в другом масштабе напряжений) показана форма управляющего сигнала, в данном случае он имеет вид коротких прямоугольных импульсов. При коммутации тока с промышленной частотой, можно пренебречь инерционностью тиристора и считать, что включение происходит по нарастающему фронту управляющего сигнала; импульсы самого управляющего сигнала могут быть достаточно короткими, в качестве нижней границы их длительности можно принять время включения тиристора.

В структурной схеме на рис. %img:i1, тиристор образует управляемый однополупериодный выпрямитель. В результате, через нагрузку течёт выпрямленный (пульсирующий) ток, а максимальная мощность на нагрузке не может превышать половину от мощности при непосредственном включении нагрузки в сеть. Если это не то, что нам требуется, следует выбрать другую схему. Возможные варианты: дополнить схему мостовым выпрямителем, превращающим ключ с односторонней проводимостью в ключ с двусторонней проводимостью (рис. %img:i3); использовать два встречно включённых тиристора, каждый с собственной схемой управления (рис. %img:i4); использовать специально предназначенные для подобных случаев триаки (они же симисторы), рис %img:i5.

(Мост + тиристор) как ключ с двусторонней проводимостью.

Рис. %img:i3

Два встречно включенных тиристора как ключ с двусторонней проводимостью.

Рис. %img:i4

Структурная схема симисторного регулятора мощности.

Рис. %img:i5

Диаграммы работы симисторного регулятора мощности.

Рис. %img:i6

Вариант на рис. %img:i5 с симистором является оптимальным для большинства случаев. Ток через нагрузку получается несинусоидальным, но не содержит значительной постоянной составляющей; мощность может регулироваться от 0 до значения, практически равного мощности при непосредственном подключении нагрузки к сети; схема содержит минимум деталей. Зачастую в подобных схемах симистор используется совместно с маломощной симисторной оптопарой (рис. %img:i7), которая обеспечивает гальваническую развязку цепей управления от сети, попутно решает все вопросы с полярностью импульсов на управляющем выводе симистора и обеспечивает дополнительное усиление управляющего сигнала.

Управление симистором через оптосимистор.

Рис. %img:i7

Здесь резистор R1 ограничивает ток через управляющий вывод симистора TRIAC; R2 обеспечивает нулевое напряжение на управляющем выводе при закрытой оптопаре IC1.

Пример схемы 1 (регулятор мощности пылесоса LG)

В качестве примера реальной схемы (рис. %img:i8) приведём схему регулятора мощности в пылесосе LG TurboX 1600W; 400W Suction Power; V-C4566HTU. В целом, это достаточно хорошая схема, обеспечивает плавное регулирование мощности в достаточно широких пределах; максимально допустимая мощность нагрузки составляет около 1.5 кВт; схема проста и надёжна. В отличие от схемы, приведённой в следующем примере, может использоваться как образец для собственных разработок.

Схема регулятора мощности в пылесосе LG TurboX 1600W; 400W Suction Power; V-C4566HTU.

Рис. %img:i8

На выводы ACW печатной платы подаётся напряжение сети; к выводам MOTOR подключается коллекторный электродвигатель пылесоса. Роль основного силового элемента в схеме играет симистор TRIAC. Демпферная цепь R1, C1 ограничивает скорость нарастания и величину выбросов напряжения на симисторе и тем самым защищает его от ложных включений. Необходимость демпферной цепи обусловлена тем, что электродвигатель как нагрузка может иметь реактивную (индуктивную) составляющую, на которой происходят выбросы напряжения в моменты коммутации — и внешней, и внутренней, связанной с работой щёточно-коллекторного узла. Управляется симистор через оптосимистор IC1. Схема управления питается через понижающий трансформатор с выходным переменным напряжением 12 В. Таким образом, схема управления имеет гальваническую развязку от сети, что обеспечивает безопасность пользователя при регулировке мощности пылесоса с помощью переменного резистора, встроенного в рукоятку шланга.

Схема управления работает следующим образом. На выходе мостового выпрямителя DB1, подключённого к вторичной обмотке трансформатора, формируется пульсирующее напряжение (сглаживающий фильтр отсутствует). Делитель R6, R7 и диод D5 обеспечивают смещение на базе транзистора Q2; эмиттер транзистора подключён к конденсатору C5, входящему в состав RC-цепи (R9, переменный резистор регулировки оборотов, C5). С помощью переменного резистора регулировки оборотов можно изменять постоянную времени данной RC-цепи: чем больше сопротивление переменного резистора, тем медленнее будет заряжаться конденсатор. В начале каждой полуволны питающего напряжения конденсатор C5 разряжен, транзисторы Q1, Q2 закрыты. Во время каждой полуволны напряжения происходит заряд конденсатора и в тот момент, когда напряжение на конденсаторе C5 превысит напряжение смещения на базе Q2, транзистор Q2 откроется, его коллекторный ток откроет транзистор Q1, который через оптопару включит симистор. При этом ток через светодиод оптопары IC1 вызовет падение напряжения на резисторе R8, в результате чего упадёт напряжение смещения на базе транзистора Q1, а его коллекторный ток ещё более увеличится, увеличивая и коллекторный ток транзистора Q1. То есть, Q1 и Q2 образуют схему с положительной обратной связью, которая после срабатывания, "защёлкивается": Q1 переходит в состояние насыщения, напряжение на базе Q2 становится практически равным 0. Конденсатор достаточно быстро разряжается через резистор малого сопротивления R10, после чего транзисторы Q2 и Q1 закрываются. Напряжение смещения на базе Q2 восстанавливается, конденсатор C5 снова начинает заряжаться. Таким образом, схема формирует импульс запуска симистора IC1 (который открывает симистор TRIAC), причём временем запаздывания момента формирования импульса относительно начала полупериода мы можем управлять (изменяя сопротивление переменного резистора).

Читайте так же:
Пятак сцепления как регулировать

Кстати, до конца полупериода схема успевает сформировать ещё несколько импульсов запуска, но они уже ни на что не влияют: открытые первым импульсом симисторы остаются открытыми до конца полупериода. В следующем полупериоде все процессы повторяются.

Для управления регулятором мощности используется переменный резистор, а точнее приведённая на рис. %img:i9 схема, построенная на основе сдвоенного переменного резистора.

Управление регулятором мощности.

Рис. %img:i9

Немного о резисторах R12, R12-1, назначение которых, с первого взгляда, может показаться неочевидным. Ведь судя по схеме, они не входят в состав какого-либо контура, следовательно, ток через них не течёт, а значит, их можно было бы исключить. Кроме того, они создают гальваническую связь между низковольтной частью схемы и сетью, которые так тщательно развязывались с помощью оптопары и трансформатора. На самом деле резисторы необходимы и служат именно для искусственного введения гальванической связи между электрически изолированными частями схемы. При работе пылесоса, связанной с формированием интенсивных потоков воздуха, содержащих множество пылевых частиц, может происходить накопление значительных зарядов статического электричества на отдельных узлах агрегата. В частности, это могло бы происходить на всей схеме управления в целом, особенно с учётом того, что провод от схемы управления до переменного резистора для регулировки оборотов проложен внутри всасывающего шланга пылесоса. По мере накопления заряда возможен пробой трансформатора или оптопары и выход схемы из строя. Резисторы R12, R12-1 препятствуют такому накоплению заряда, а ввиду их высокого сопротивления, возможный ток утечки из сети на землю оказывается достаточно малым, чтобы устройство осталось безопасным для пользователя.

Пример схемы 2 (регулятор мощности дрели)

На следующем рисунке приведена схема регулятора оборотов дрели. Здесь уже используется тиристор, электродвигатель питается выпрямленным током. Схема предельно упрощена, отсутствует гальваническая развязка между сетью и элементами управления; сама схема формирования управляющих импульсов для тиристора построена полностью на пассивных элементах и довольно примитивна. В результате характеристики схемы оказываются весьма посредственными (регулировка не плавная, скорее грубая, скорость вращения нестабильна). Кроме того, дрель является достаточно мощным потребителем и использование однополупериодного выпрямителя, который имеет постоянную составляющую потребляемого от сети тока, нельзя признать удачным решением. Эту схему следует рассматривать не как образец для подражания, а как подтверждение того, что схема управления тиристором/симистором может быть крайне простой.

Схема електрическая принципиальная дрели ДРЭ-2 (производства завода Диффузион).

Рис. %img:i10

Регулятор мощности на симисторе и тиристоре

Принцип действия регулятора

Практически в любом радиоэлектронном устройстве в большинстве случаев присутствует регулировка по мощности. За примерами далеко ходить не надо: это электроплиты, кипятильники, паяльные станции, различные регуляторы вращения двигателей в устройствах.

Способов, по которым можно собрать регулятор напряжения своими руками 220 В, в Сети полно. В большинстве случаев это схемы на симисторах или тиристорах. Тиристор, в отличие от симистора, более распространённый радиоэлемент, и схемы на его основе встречаются гораздо чаще. Разберём разные варианты исполнения, основанные на обоих полупроводниковых элементах.

Регулятор мощности на симисторе

Симистор, по большому счету, — это частный случай тиристора, пропускающий ток в обе стороны, при условии, что он выше тока удержания. Один из его недостатков — это плохая работа на высоких частотах. Поэтому его часто используют в низкочастотных сетях. Для построения регулятора мощности на основе обычной сети 220 В, 50 Гц он вполне подходит.

Регулятор напряжения на симисторе используется в обычных бытовых приборах, где нужна регулировка. Схема регулятора мощности на симисторе выглядит следующим образом.

Схема регулятора мощности на симисторе

  • Пр. 1 — предохранитель (выбирается в зависимости от требуемой мощности).
  • R3 — токоограничительный резистор — служит для того чтобы при нулевом сопротивлении потенциометра остальные элементы не выгорели.
  • R2 — потенциометр, подстроечный резистор, которым и осуществляется регулировка.
  • C1 — основной конденсатор, заряд которого до определённого уровня отпирает динистор, вместе с R2 и R3 образует RC-цепь
  • VD3 — динистор, открытие которого управляет симистором.
  • VD4 — симистор — главный элемент, производящий коммутацию и, соответственно, регулировку.

Как работает регулятор

Основная работа возложена на динистор и симистор. Сетевое напряжение подаётся на RC-цепочку, в которой установлен потенциометр, им в итоге и регулируется мощность. Производя регулировку сопротивления, мы меняем время зарядки конденсатора и тем самым порог включения динистора, который, в свою очередь, включает симистор. Демпферная RC-цепь, подключённая параллельно симистору, служит для сглаживания помех на выходе, а также при реактивной нагрузке (двигатель или индуктивность) предохраняет симистор от скачков высокого обратного напряжения.

Читайте так же:
Регулировка редукционного клапана москвич 2141

Симистор включается, когда ток, проходящий через динистор, превышает ток удержания (справочный параметр). Отключается, соответственно, когда ток становится меньше тока удержания. Проводимость в обе стороны позволяет настроить более плавную регулировку, чем это возможно, например, на одном тиристоре, при этом используется минимум элементов.

Осциллограмма регулировки мощности представлена ниже. Из неё видно, что после включения симистора оставшаяся полуволна поступает на нагрузку и при достижении 0, когда ток удержания уменьшается до такой степени, что симистор отключается. Во втором «отрицательном» полупериоде происходит тот же процесс, т. к. симистор обладает проводимостью в обе стороны.

Как регулируется выходная мощность в регуляторах

Напряжение на тиристоре

Для начала разберёмся, чем отличается тиристор от симистора. Тиристор содержит в себе 3 p-n перехода, а симистор — 5 p-n переходов. Не углубляясь в детали, если говорить простым языком, симистор обладает проводимостью в обоих направлениях, а тиристор — только в одном. Графические обозначения элементов показаны на рисунке. Из графики это хорошо видно.

Схемное обозначение тиристора, симистора и динистора

Принцип работы абсолютно такой же. На чём и построена регулировка по мощности в любой схеме. Рассмотрим несколько схем регулятора на тиристорах. Первая простейшая схема, которая в основе повторяет схему на симисторе, описанную выше. Вторая и третья — с применением логики, схемы, которые более качественно гасят помехи, создаваемые в сети переключением тиристоров.

Простая схема

Простая схема фазового регулирования на тиристоре представлена ниже.

Простейшая схема регулятора мощности на тиристоре

Единственное её отличие от схемы на симисторе — это то, что регулировка происходит только положительной полуволны сетевого напряжения. Времязадающая RC-цепь путём регулирования величины сопротивления потенциометра регулирует величину отпирания, тем самым задавая выходную мощность, поступающую на нагрузку. На осциллограмме это выглядит следующим образом.

Как регулируется выходная мощность в регуляторах

Из осциллограммы видно, что регулировка мощности идёт путём ограничения напряжения поступающего на нагрузку. Образно говоря, регулировка заключается в ограничении поступления сетевого напряжения на выход. Регулируя время заряда конденсатора путём изменения переменного сопротивления (потенциометра). Чем выше сопротивление, тем дольше происходит заряд конденсатора и тем меньше мощности будет передано на нагрузку. Физика процесса подробно описана в предыдущей схеме. В этом случае она ничем особым не отличается.

С генератором на основе логики

Второй вариант более сложный. В связи с тем, что процессы коммутации на тиристорах вызывают большие помехи в сети, это плохо влияет на элементы, установленные на нагрузке. Особенно если на нагрузке находится сложный прибор с тонкими настройками и большим количеством микросхем.

Регулятор мощности на тиристоре с мягкой регулировкой

Такая реализация тиристорного регулятора мощности своими руками подойдёт для активных нагрузок, например, паяльник или любые устройства нагрева. На входе стоит выпрямительный мост, поэтому обе волны сетевого напряжения будут положительными. Обратите внимание, что при такой схеме для питания микросхем понадобиться дополнительный источник постоянного напряжения +9 В. Осциллограмма из-за наличия выпрямительного моста будет выглядеть следующим образом.

Осциллограмма при наличии выпрямительного моста

Обе полуволны теперь будут положительными из-за влияния выпрямительного моста. Если для реактивных нагрузок (двигатели и другие индуктивные нагрузки) наличие разно полярных сигналов предпочтительно, то для активных — положительное значение мощности крайне важно. Отключение тиристора происходит также при приближении полуволны к нулю ток удержания подаёт до определённого значения и тиристор запирается.

На основе транзистора КТ117

Наличие дополнительного источника постоянного напряжение может вызвать затруднения, если его нет, и вовсе придётся городить дополнительную схему. Если дополнительного источника у вас нет, то можно воспользоваться следующей схемой, в ней генератор сигналов на управляющий вывод тиристора собран на обычном транзисторе. Есть схемы на основе генераторов, построенных на комплементарных парах, но они более сложные, и здесь мы их рассматривать не будем.

Регулятор мощности с генератором на КТ117

В данной схеме генератор построен на двухбазовом транзисторе КТ117, который при таком применении будет генерировать управляющие импульсы с периодичностью, задаваемой подстроечным резистором R6. На схеме ещё реализована система индикации на базе светодиода HL1.

  • VD1-VD4 — диодный мост, выпрямляющий обе полуволны и позволяющий выполнять более плавную регулировку мощности.
  • EL1 — лампа накаливания — представлена вроде нагрузки, но может быть любой другой прибор.
  • FU1 — предохранитель, в этом случае стоит на 10 А.
  • R3, R4 — токоограничительные резисторы — нужны, чтобы не сжечь схему управления.
  • VD5, VD6 — стабилитроны — выполняют роль стабилизации напряжения определённого уровня на эмиттере транзистора.
  • VT1 — транзистор КТ117 — установлен должен быть именно с таким расположение базы №1 и базы №2, иначе схема будет не работоспособна.
  • R6 — подстроечный резистор, определяющий момент, когда поступает импульс на управляющий вывод тиристора.
  • VS1 — тиристор — элемент, обеспечивающий коммутацию.
  • С2 — времязадающий конденсатор, определяющий период появления управляющего сигнала.

Остальные элементы играют незначительную роль и в основном служат для токоограничения и сглаживания импульсов. HL1 обеспечивает индикацию и сигнализирует только о том, что прибор подключён к сети и находится под напряжением.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector