Taxitaxitaxi.ru

Эволюшн
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Определение технического состояния и настройка элементов тепловой защиты

Определение технического состояния и настройка элементов тепловой защиты

От надежности работы тепловых реле и расцепителей автоматических выключателей, являющихся основной защитой электрооборудования от перегрузки, в значительной степени зависит срок службы электропроводов и электроустановок. Для защиты электрооборудования широко применяют тепловые реле ТРН, ТРИ, ТРА и ТРВ. Диапазон номинальных токов реле ТРН составляет от 3,2 до 40, ТРП — от 25 до 150, ТРА — от 7 до 215, ТРВ — от 7 до 200 А. Для определения технического состояния тепловые реле внимательно осматривают и измеряют толщину контактов. Контакты подлежат замене, если их толщина составляет менее 0,5 мм. Следует отметить, что при толщине контактов менее 0,5 мм реле ТРА, ТРВ, а также ранее выпускавшиеся реле РТ-1 и РТ-2 подлежат выбраковке.

Нагреватели тепловых реле выбраковываются при замыкании витков, раскрытии скрепок (реле ТРН), изгибе нагревателя и его сближении с биметаллической пластиной, а также при выгорании металла. Биметаллические пластины выбраковываются при деформации и обгорании. При наличии такого дефекта реле ТРН выбраковывается в собранном виде. Контактное давление проверяют нажатием головкой граммометра на подвижную систему реле, как это показано на рис. 43.

Положение стержня граммометра при проверке контактного давления реле ТРП-25

Рис. 43. Положение стержня граммометра при проверке контактного давления реле ТРП-25:
1 — неподвижный контакт; 2 — подвижный контакт; 3 — граммометр; 4 — контактная колодка; 5 — упор.

Раствор контактов измеряют щупами. Значения контактного давления и растворов контактов тепловых реле приведены в таблице ниже.

Значения контактного давления и растворов контактов тепловых реле

ПараметрТип реле
ТРА. ТРВТРПPT
Контактное давление, гс385±6050—80
Раствор, мм1,7±0,50,8—13

После определения давления и раствора контактов определяют время срабатывания и возврата реле. Для этого реле подключают к зажимам прибора, позволяющего плавно регулировать ток в широких пределах или к схеме, показанной на рис. 44.

Схема для проверки тепловых реле

Рис. 44. Схема для проверки тепловых реле

Для определения времени срабатывания через реле пропускают испытательный ток, равный 1,05Iн. При температуре 20° С (393 К) реле не должно срабатывать в течение часа.

Затем ток увеличивают до 1,2Iн и убеждаются в том, что реле срабатывает в течение 20 мин. Если время срабатывания не отвечает указанным значениям, реле регулируют с помощью рычага плавного регулирования или регулировочными гайками. Если отрегулировать реле не удается, его заменяют.

После настройки реле на заданное значение тока рекомендуется нанести краской метку на корпусе напротив положения рычага, отвечающего необходимой уставке.

Для настройки тепловых реле описанным выше способом затрачивается сравнительно много времени. Поэтому на практике часто применяют форсированный способ проверки и настройки, основанный на сравнении настраиваемого реле с эталонным. При этом нагревательные элементы контролируемого и эталонного реле соединяют последовательно и подключают к зажимам прибора или включают в схему (рис. 44). Через реле пропускают ток, равный 2,5-3Iн и измеряют время, через которое срабатывает контролируемое и эталонное откалиброванное реле. У реле, сработавших ранее или позже эталонного, в зависимости от конструкции плавно перемещают рычаг регулятора, завинчивают или отвинчивают гайки регулирования уставки до срабатывания реле. Эту операцию выполняют как можно быстрее (не более 0,5 мин после срабатывания эталонного реле). Опыт повторяют через 10—15 мин. Настройка реле считается удовлетворительной, если время срабатывания проверяемого или настраиваемого реле отличается от времени срабатывания эталонного реле не более чем на +10%.

Преимущества описанного способа, кроме сокращения времени проверки или настройки, заключаются еще и в том, что не нужно ожидать полного охлаждения реле перед каждым новым опытом настройки после регулирования и на результаты настройки не влияет температура окружающего воздуха, т. е. проверку и настройку можно выполнять при любой температуре.

Во время проверки или настройки тепловых реле убеждаются, что время возврата контактов реле в начальное положение не превышает 3 мин.

Важным требованием по обеспечению надежности защиты электроприводов и электроустановок является периодическая проверка работы элементов тепловых расцепителей автоматических выключателей. При проверке элементов тепловых расцепителей зажимы автоматического выключателя присоединяют к прибору или к испытательной схеме. Через включенный автоматический выключатель пропускают ток нагрузки, равный номинальному току расцепителя. При этом автоматический выключатель не должен отключаться. Затем у автоматических выключателей проверяют время срабатывания тепловых расцепителей при одновременной нагрузке всех полюсов испытательным током. Значения испытательного тока для автоматических выключателей серии А3100 приведены в таблице ниже. Время срабатывания расцепителей должно соответствовать данным таблицы ниже.

Данные для проверки работы тепловых расцепителей автоматических выключателей при одновременной нагрузке всех полюсов двукратным (А3110) и трехкратным током (А3120, А3130, А3140)

Тип выключателяНоминальный ток расцепителя, АИспытательный ток, А при температуре воздуха, °СВремя срабатывания при одновременной нагрузке всех полюсов испытательным током, сМаксимальное время, больше которого нельзя держать выключатель под испытательным током, с
+5+10+15+20+25+30+35+40
А31101537353433323029272519—2750
2048464443424038373527—3770
2559575554525048474535—4590
3074716866636057545055—65130
4096918986838077747050—80160
5011411110910610310097909080—100100
6013713313112712412011611310970—90180
7015715415115014414013613312975—95190
85190187187182174170166162156110—140240
100228224218212206200194187180100—150240
A3I201550504948464544434118—2245
2057666564626059575516—2245
2584838180777573716924—3060
30101999796929088858328—3870
4013413213012812312011711411040—50100
5016816516216116415014614313850—60120
6020219919419318418017617116650—60120
8026926425925724624023422822170—80160
10033633032432130630029328527660—70140
АЗ 13012040339638938536936035134233165—75150
14047046245444943142041039938665—76150
17057156155154652351049748546968—78150
20067266064864261560060058557078—88170
А314025084082581080376975073171369060—70140
300100899097296392390087885582865—75150
350117611551134112410761050102499899655—75150
400134413201296128412301200117о1140110450—60120
50015801650162016051538150014631425138050-60120
60020161980194419261845180017551710165665—75150

Работу тепловых расцепителей автоматических выключателей серии АП50 проверяют при нагрузке током, равным 1,1, 1,35 и 6Iн. При температуре 25° С (298 К) время срабатывания тепловых расцепителей должно находиться в пределах, указанных в табл. 25. Если при проверке тепловых расцепителей автоматических выключателей время срабатывания не отвечает данным таблиц, тепловые расцепители подлежат замене.

При определении технического состояния и настройке тепловых реле, а также при проверке тепловых расцепителей автоматических выключателей можно использовать стенд МИИСП для настройки защит и сушки обмоток электродвигателей, обеспечивающий нагрузку тепловых реле и тепловых расцепителей переменным током до 600 А, или другие приборы.

Проверка тепловых и особенно электромагнитных расцепителей автоматических выключателей с номинальным током выше 60 А вызывала определенные трудности, так как выпускаемые приборы не обеспечивали требуемой силы тока. В связи с этим было разработано приспособление КИ-6366 для проверки и регулировки тепловых и электромагнитных защит электроприводов и электроустановок мощностью до 125 кВт при техническом обслуживании и ремонте, обеспечивающее регулируемый ток от 0 до 2000 А. Приспособление выполнено переносным и состоит из измерительного и нагрузочного блоков.

Выбор ВА47-29 и настройка РТИ в схеме управления асинхронным электродвигателем (2009)

В цепи обмоток электромотора, помимо короткого замыкания, возможен режим перегрузки, возникающий из-за:

  • обрыва фазы;
  • повышения/снижения напряжения;
  • возрастания момента на валу свыше 1,1 Мном.

Ток двигателя при перегрузке увеличивается на 20. 50%, нагрев обмоток — пропорционально квадрату тока, соответственно на 40. 125%. Если перегрузка кратковременна 2-3 минуты, ею можно пренебречь. Но если более продолжительна, то возрастает вероятность пробоя изоляции обмоток двигателя. Слежением за величиной перегрузки и отключением двигателя занимается тепловое реле. Время его отключения должно быть тем меньше, чем больше ток перегрузки, и пропорционально квадрату отношения величины рабочего тока к току перегрузки.

Рассмотрим типовую схему включения асинхронного электродвигателя. В нее входят: трехполюсный автоматический выключатель, контактор серии КМИ, кнопочная станция, тепловое реле серии РТИ, электродвигатель (см. Рис. 1).

Рисунок 1. Типовая схема включения асинхронного электродвигателя

При выборе автоматического выключателя необходимо учитывать пропускание пускового тока двигателя:

Для двигателя 4А100S2У3 (Рном = 4,0 кВт, пном=2880 об/ мин, КПД=86,5%, CoS9=0,89, Iпуск/Iном=7,5 номинальный ток Іном=Рном/ 380.Cos9 КПД=4000/1, 73.380.0, 89Ю,865=7,9А, пусковой ток Іпуск=7,5.Іном=59,3А) при условии, что пусковой ток 59,3А меньше нижней границы диапазона тока срабатывания ЭМ расцепителя, выбираем ВА47-29 с характеристиками В20, С13 или D8.

Сопоставим выбранные выключатели. По загрузке В20/С13/ D8 соотносятся, как 0,4/0,62/1; В20 загружен на 40%, С13 — на 62%, D8 — на 99%. По тепловыделению в20/С13/ D8 соотносятся как 0,16/0,38/0,98. Мощность тепловых потерь на В20 составляет 1,7 Вт, на С13 — 4 Вт, на D8 — 10,3 Вт. Что выбрать? Вариант с меньшим тепловыделением и загрузкой!

Приведем еще пример расчета и выбора вводного автоматического выключателя ВА47-29 для электродвигателей серии АОП2 (с повышенным пусковым моментом).

При определении пускового тока принимаем его кратность для двигателей 1500 об/мин равной 7,5; для 1000 об/мин — 7, и для 750 об/мин — 6. Расчетный номинальный ток вводного автомата определяем делением пускового тока на кратность нижней границы диапазона настройки расцепителя. Для характеристик: В-3, для С — 5, для D — 10. Второе условие выбора вводного автомата: номинальный ток автомата должен быть больше номинального тока двигателя.

В результате, например, для двигателя АОП2-42-4 мощностью 5,5 кВт и частотой вращения 1440 об/мин (номинальный ток 11,7 А, пусковой ток 88 А), наиболее подходящим с точки зрения надежности будет вариант автоматического выключателя с характеристикой В 32, а не D13 или С18!

Настройка уставки теплового реле

Проведение пуско-наладочных работ предусматривает настройку тепловой защиты. Наиболее верно проводить настройку уставки теплового реле «на горячем двигателе», при установившемся температурном режиме работающего двигателя и теплового реле.

Настройка теплового реле проводится поэтапно. Перед пуском двигателя уставку ставят на максимальное значение. При установившемся температурном режиме, спустя 25. 40 минут непрерывной работы при номинальном рабочем режиме, уставку плавно уменьшают до срабатывания теплового реле и отключения электродвигателя.

Слегка «загрубив» уставку, повторно запускают двигатель и проверяют правильность настройки. Если реле опять отключит двигатель, то уставку увеличивают, если не отключит — то, уменьшая уставку, снова проверяют срабатывание теплового реле во второй, и в третий раз.

Оптимальным считается вариант настройки при совпадении теплового режима окружающей среды щитового оборудования и двигателя. Например, при размещении в одном помещении.

Положительным фактором является встроенная термокомпенсация теплового реле. Но если ее нет, необходимо, в зависимости от температуры окружающей среды (лето/зима — день/ночь), проводить корректировку уставки.

Тепловые реле серии РТИ торговой марки IEK имеют термокомпенсацию. Это рычаг между эксцентриком уставки и механизмом переключения контактов, который изготовлен из биметалла.

Более сложный вариант настройки тепловой защиты двигателя — при размещении пускозащитной аппаратуры в щитовом помещении, а двигателя — на открытом воздухе. Именно в летний период при максимальной дневной температуре повышается вероятность перегрузки двигателя. В таких случаях применяют встроенную температурную защиту двигателя. В статорной обмотке двигателя (при его изготовлении) размещают позисторы (резисторы с нелинейной зависимостью сопротивления от температуры), автоматически контролирующие температурный режим обмоток и отключающих питание двигателя при достижении максимально-допустимой температуры обмотки.

Гарантией наиболее верного способа защиты от перегрузки будет правильный выбор мощности приводного двигателя. И если нормы проектирования СССР рекомендовали выбирать двигатель с загрузкой 0,75.0,9 (то есть запас составлял 10-25%), то при выборе мощности двигателя с загрузкой на половину номинала проблем с тепловой защитой будет гораздо меньше.

Регулировка и настройка тепловых реле и расцепителей автоматических выключателей

Регулировка и настройка тепловых релеОсновным средством
защиты электроприводов от перегрузок в настоящее время являются тепловые
реле, а также автоматические выключатели с тепловыми расцепителями.
Наибольшее распространение получили двухполюсные реле типа ТРН и ТРП, а
также трехполюсные — РТЛ, РТТ. Последние имеют улучшенные характеристики
и обеспечивают защиту от несимметричных режимов. При 20 % перегрузке тепловое реле должно отключать электродвигатель за время не более 20 мин, а при двукратной перегрузке
— примерно за 2 мин …

Регулировка и настройка тепловых релеОсновным средством защиты электроприводов от перегрузок в настоящее время являются

При 20 % перегрузке тепловое реле должно отключать электродвигатель за время не более 20 мин, а при двукратной перегрузке — примерно за 2 мин. Однако это требование часто не выполняется по той причине, что номинальный ток нагревательного элемента теплового реле не соответствует номинальному току защищаемого электродвигателя. На работу тепловых реле существенное влияние оказывает температура окружающей среды.

Основным параметром тепловых реле является время-токовая защитная характеристика, т. е. зависимость времени срабатывания от величины перегрузки.

Первая из них — для реле, находящегося в холодном состоянии (разогрев током начинается, когда реле имеет температуру, равную температуре окружающей среды), и вторая — для реле, находящегося в горячем состоянии (режим перегрузки наступает после работы реле в течение 30 — 40 мин под номинальным током).

Защитные характеристики теплового реле

Рис. 1. Защитные характеристики теплового реле: 1 — зона срабатывания из холодного состояния, 2 — зона срабатывания из горячего состояния

Для обеспечения надежного и своевременного отключения электродвигателя при перегрузке тепловое реле должно настраиваться на специальном стенде. При этом исключается ошибка из-за естественного разброса номинальных токов заводских нагревательных элементов.

При проверке и настройке тепловой защиты на стенде используется так называемый метод фиктивных нагрузок. Через нагревательный элемент пропускают ток пониженного напряжения, имитируя таким образом реальную нагрузку, и по секундомеру определяют время срабатывания. В процессе настройки необходимо стремиться к тому, чтобы 5…6-кратный ток отключался через 9 — 10 с, а 1,5-кратный через 150 с (при холодном состоянии нагревателя).

Для настройки тепловых реле можно использовать серийно выпускавшиеся cпециализированные стенды.

На рис. 2 показана схема такого устройства. Приспособление состоит из маломощного нагрузочного трансформатора TV2, к вторичной обмотке которого подключается нагревательный элемент теплового реле КК, а напряжение первичной обмотки плавно регулируется автотрансформатором TV1 (например ЛАТР-2). Ток нагрузки контролируется амперметром РА, включенным во вторичную цепь через трансформатор тока.

Принципиальная схема установки для проверки и настройки тепловых реле

Рис. 2. Принципиальная схема установки для проверки и настройки тепловых реле

Тепловое реле проверяют следующим образом. Ручку автотрансформатора устанавливают в нулевое положение и подают напряжение, затем поворотом ручки устанавливают ток нагрузки I = 1,5 I ном и секундомером контролируют время срабатывания реле (в момент погасания лампы HL). Операцию повторяют для остальных нагревательных элементов реле.

Если время срабатывания хотя бы одного из них не соответствует норме, тепловое реле следует отрегулировать. Регулировка производится специальным регулировочным винтом. При этом добиваются, чтобы при токе I = 1,5 I ном время срабатывания составляло 145 — 150 с.

Отрегулированное тепловое реле следует настроить на номинальный ток двигателя и температуру окружающей среды. Это делают в том случае, когда номинальный ток нагревательного элемента отличается от номинального тока электродвигателя (на практике в основном так и бывает) и когда температура окружающего воздуха ниже номинальной ( + 40° С) более чем на 10° С. Токовую уставку реле можно регулировать в пределах 0,75 — 1,25 •номинального тока нагревателя. Настройка производится в следующей последовательности.

1. Определяют поправку (E1) реле на номинальный ток двигателя без температурной компенсации ±Е1 = ( I ном — I о)/С I о,

где Iном — номинальный ток двигателя, I о — ток нулевой уставки реле, С — цена деления эксцентрика (С = 0,05 для открытых пускателей и С = 0,055 для защищенных).

2. Определяют поправку на температуру окружающей среды E2=(t — 30)/10,

где t — температура окружающей среды, °С.

3. Определяют суммарную поправку ±Е=(±Е1) + (-Е2).

При дробной величине Е ее следует округлить до целого в большую или меньшую сторону в зависимости от характера нагрузки.

4. На полученное значение поправки переводят эксцентрик теплового реле.

Тщательно отрегулированные тепловые реле типа ТРН и ТРП имеют защитные характеристики, мало отличающиеся от средних. Однако такие реле не обеспечивают защиту электродвигателя в случае заклинивания, а также электродвигателей, не запустившихся при обрыве фазы.

Тепловое реле для защиты электродвигателей

Помимо магнитных пускателей c тепловыми реле в электроприводах для нечастых пусков их и защиты электрических цепей от коротких замыканий используются автоматические выключатели. При наличии комбинированных расцепителей такие аппараты защищают электроприемники также от перегрузки. Характерные параметры автоматических выключателей: минимальный ток срабатывания — (1,1…1,6) I ном, уставка электромагнитного расцепителя — (3 — 15) I ном, время срабатывания при токе I = 16 I ном — менее 1 с.

Испытание тепловых элементов расцепителей автоматов проводят аналогично проверке тепловых реле. Испытание выполняется током 2 I ном при температуре окружающей среды +25° С. Время срабатывания элемента (35 — 100 с) должно находиться в пределах, указанных в заводской документации или найденных по защитной характеристике каждого автомата. Настройка тепловых элементов заключается в установке при помощи винтов биметаллических пластинок на одинаковое время срабатывания при одинаковом токе.

Для проверки электромагнитного расцепителя автоматического выключателя через него от нагрузочного устройства пропускают ток на 15% меньше тока уставки (тока отсечки). Затем плавно увеличивают испытательный ток до отключения аппарата. При этом максимальное значение тока срабатывания не должно превышать ток уставки электромагнитного расцепителя более чем на 15 %. Испытание проводится не более 5 с во избежание недопустимого перегрева контактов выключателя.

Для проверки расцепителя минимального напряжения на зажимы автоматического выключателя подают напряжение U = 0,8Uном и включают аппарат, затем напряжение плавно понижают до момента срабатывания Uc = (0,35 — 0,7)Uном.

В последнее время в промышленности стали использовать полупроводниковые аппараты защиты и управления. Вместо обычных магнитных пускателей, например, применяют специальные тиристорные блоки. Техническое обслуживание таких устройств заключается в периодических внешних осмотрах и проверке работоспособности.

10.12.2016 Без рубрики Нет комментариев

Проверка и регулировка тепловых реле

Тепловые реле предназначены для защиты электродвигателей от повреждения из-за перегрузок, затянутого пуска, асимметрии фаз и заклинивания ротора.

Зачем нужно проверять тепловое реле?

Регулярная проверка теплового реле позволяет содержать механизм реле и контакты в рабочем состоянии, а при возникновении неисправностей вовремя их устранить.От надежности аппаратов защиты зависит безаварийная работа электрооборудования, поэтому важно знать, как проверить работоспособность теплового релеперед установкой в цепь питания двигателя.

Под прозрачной крышкой на передней панели расположены элементы настройки и проверки реле:

• кнопка "TEST" для имитации работы механизма реле;
• регулятор тока уставки срабатывания теплового элемента;
• кнопка "STOP" для принудительного размыкания нормально-замкнутого контакта;
• кнопка-переключатель режима повторного взвода "RESET" (автоматический Aили ручнойP);
• индикатор срабатывания реле;
• пронумерованные выводы вспомогательных контактов– 96-95 (нормально-замкнутый) и 98-97 (нормально-разомкнутый).

Способы проверки и их алгоритм

Сначала визуально проверяем плотность прилегания крышки к корпусу, состояние корпуса на отсутствие трещин, сколов, следов плавления и подгоревших пятен.

Если при визуальном осмотре не обнаружено повреждений:

1. Проверяем работоспособность теплового реле: нажимая отверткой кнопку "TEST" имитируем работуреле при перегрузке.О срабатывании механизма и переключении вспомогательных контактов сигнализирует щелчок механизма и появление красного (желтого) "флажка " в окошке индикатора. Кнопкой "RESET" возвращаем реле в исходное состояние – окошко индикатора становится прозрачным.
2. Мультиметром проверяем правильностьположения контактовдо и после срабатывания.

Как проверить тепловое реле мультиметром

Для тестирования работы контактных группможно использовать и цифровой, и аналоговый мультиметр.

Как прозвонить тепловое релецифровым мультиметром рассмотрим подробно:

1. Сначала нужно перевести мультиметр в режим прозвонки:
• подключить красный щуп в гнездо "V/Ω", черный – в гнездо "COM";
• установить переключатель напротив значка, обозначающего звук;
• соединить концы щупов – звуковой сигнал свидетельствует о правильной настройке прибора.
2. Присоединяем свободные концы щупов к выводам контактов на передней панели:
• 96-95 (нормально-замкнутый контакт NC) – услышим звуковой сигнал, значит, контакты замкнуты и пропускают ток без помех;
• 98-97 (нормально-разомкнутый NO) – отсутствие сигнала говорит о том, что контакты разомкнуты.
3. Кнопкой "TEST" вызываем срабатывание реле, прикладываем щупы мультиметра к выводам контактов, проверяем их состояние:
• 96-95 – отсутствие сигнала свидетельствует о разомкнутом состоянии нормально-замкнутого контакта (нажав кнопку "STOP", можно вернуть контакт NC в исходное состояние и снова проверить замыкание);
• 98-97 – контакт NO замкнут, слышен сигнал мультиметра.

Проверка теплового реле с полной разборкой

После долгой работы или регулярных сбоях желательно провести проверку теплового реле с полной разборкой:

• отсоединяем крышку реле от корпуса;
• осматриваем реле внутри, очищаем детали от загрязнений;
• проверяем целостность биметаллических пластин и исправность нагревательных элементов;
• осматриваем контакты, при необходимости производим чистку и регулировку;
• проверяем затяжку винтов клемм, крепления тепловых элементов и контактов;
• нажимая кнопку "TEST" убеждаемся в легкости хода контактов и отсутствие заеданий при работе механизма;
• при нажатии кнопки "STOP" проверяем срабатывание нормально-замкнутого контакта, нормально-разомкнутый при этом остается неподвижным.

Если в ходе проверки обнаружены неисправности теплового реле, например, после чистки высота контактного наклепа менее 0,5 мм, повреждены или деформированы биметаллические пластины, обнаружено выгорание материала или замыкание витков нагревательного элемента, поврежденные детали заменяют новыми.

Схема испытания тепловых реле

Для обеспечения надежного и своевременного отключения электродвигателя при перегрузке тепловое реле настраивается на специальном стенде с маломощным нагрузочным трансформатором:

1. Напряжение источника питания (220 В) подается в схему через выключатель QS.
2. Величина напряжения питания регулируется автотрансформатором TV1.
3. Через понижающий трансформатор TV2 подается напряжение на нагревательный элемент реле КК и магнитный контактор КМ.
4. Токовая нагрузка контролируется амперметром PA, подключенным через трансформатор тока TA вторичной цепи.
Настройку срабатывания теплового реле делаем методом фиктивных нагрузок:
1. Регулятор тока уставки устанавливаем в нейтральное положение.
2. Подаем напряжение в схему, устанавливаем ток нагрузки 1,5 Iном.
3. Секундомером проверяем время срабатывания – примерно 150 секунд.
4. Если за это время тепловая защита не сработала, плавно поворачиваем регулятор тока уставки до срабатывания реле.
5. Для завершения настройки проверяем срабатывание реле при других значениях нагрузочного тока, например, при 5–6 кратном превышении тока защита должна отключить нагрузку через 10 секунд.
6. После активного охлаждения по аналогичному алгоритму проверяем все нагреватели реле подачей тока на каждый отдельный элемент.
7. На корпусе реле меткой фиксируемположение регулятора.

В большинстве реле в качестве теплового элемента используется биметаллическая пластина. При нагревании проходящим током пластина изгибается в сторону металла с меньшим линейным коэффициентом расширения и свободным концом воздействует на механизм срабатывания контактов, которые отключают цепь питания электродвигателя при превышении заданной величины тока и замыкают цепь сигнализации, свидетельствующей о срабатывании тепловой защиты.

Нагрев биметаллической пластины происходит не мгновенно – реле срабатывает с некоторой задержкой времени, которая зависит от температуры окружающей среды, поэтому необходима регулировка теплового релес конкретным видом двигателя в условиях эксплуатации для исключения ложных срабатываний:

1. Определяем поправку на номинальный ток двигателя без компенсации температуры по формуле Е1 = (Iном – Iнэ)/СIнэ, где
• Iном – номинальный ток двигателя;
• Iнэ – номинальный ток нагревательного элемента;
• С – цена деления шкалы эксцентрика.
2. Определяем поправку на температуру окружающей средыпо формуле Е2 = (t – 30)/10, где t (°С) – температура воздуха.
3. Определяем суммарную поправку E = E1+E2 и переводим эксцентрик на значение суммарной поправки, округленной до целого числа.

голоса
Рейтинг статьи
Читайте так же:
Регулировка карбюратор на yamaha xjr
Ссылка на основную публикацию
Adblock
detector