Taxitaxitaxi.ru

Эволюшн
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулятор оборотов двигателя

Регулятор оборотов двигателя

Регулятор оборотов электродвигателя 220 В без потери мощности используется для поддержки первоначальной заданной частоты оборотов вала. Это один из основных принципов данного прибора, который называется частотным регулятором.

С помощью него электроприбор работает в установленной частоте оборотов двигателя и не снижает ее. Также регулятор скорости двигателя влияет на охлаждение и вентиляцию мотора. C помощью мощности устанавливается скорость, которую можно как поднять, так и снизить.

Вопросом о том, как уменьшить обороты электродвигателя 220 В, задавались многие люди. Но данная процедура довольно проста. Стоит только изменить частоту питающего напряжения, что существенно снизит производительность вала мотора. Также можно изменить питание двигателя, задействуя при этом его катушки. Управление электричеством тесно связано с магнитным полем и скольжением электродвигателя. Для таких действий используют в основном автотрансформатор, бытовые регуляторы, которые уменьшают обороты данного механизма. Но стоит также помнить о том, что будет уменьшаться мощность двигателя.

Вращение вала

Двигатели делят на:

  1. асинхронные,
  2. коллекторные.

Регулятор скорости вращения асинхронного электродвигателя зависит от подключения тока к механизму. Суть работы асинхронного мотора зависит от магнитных катушек, через которые проходит рамка. Она поворачивается на скользящих контактах. И когда при повороте она развернется на 180 градусов, то по данным контактам связь потечет в обратном направлении. Таким образом, вращение останется неизменным. Но при этом действии нужный эффект не будет получен. Он войдет в силу после внесения в механизм пары десятков рамок данного типа.

Коллекторный двигатель используется очень часто. Его работа проста, так как пропускаемый ток проходит напрямую — из-за этого не теряется мощность оборотов электродвигателя, и механизм потребляет меньше электричества.

Двигатель стиральной машины также нуждается в регулировке мощности. Для этого были сделаны специальные платы, которые справляются со своей работой: плата регулировки оборотов двигателя от стиральной машины несет многофункциональное употребление, так как при ее применении снижается напряжение, но не теряется мощность вращения.

Схема данной платы проверена. Стоит только поставить мосты из диодов, подобрав оптрон для светодиода. При этом еще нужно поставить симистор на радиатор. В основном регулировка двигателя начинается от 1000 оборотов.

Если не устраивает регулятор мощности и не хватает его функциональности, можно сделать или усовершенствовать механизм. Для этого нужно учитывать силу тока, которая не должна превышать 70 А, и теплоотдачу при использовании. Поэтому можно установить амперметр для регулировки схемы. Частота будет небольшой и будет определена конденсатором С2.

Далее стоит настроить регулятор и его частоту. При выходе данный импульс будет выходить через двухтактный усилитель на транзисторах. Также можно сделать 2 резистора, которые будут служить выходом для охладительной системы компьютера. Чтобы схема не сгорела, требуется специальный блокиратор, который будет служить удвоенным значением тока. Так данный механизм будет работать долго и в нужном объеме. Регулирующие приборы мощности обеспечат вашим электроприборам долгие годы службы без особых затрат.

Что такое асинхронный двигатель?

Электродвигатели переменного тока нашли довольно широкое применение в различных сферах нашей жизнедеятельности, в подъемно транспортном, обрабатывающем, измерительном оборудовании. Они используются для превращения электрической энергии, которая поступает от сети, в механическую энергию вращающегося вала. Чаще всего используются именно асинхронные преобразователи переменного тока. В них частота вращения ротора и статора отличаются. Между этими активными элементами обеспечивается конструктивный воздушный зазор.

И статор, и ротор имеют жесткий сердечник из электротехнической стали (наборного типа, из пластин), выступающий в роли магнитопровода, а также обмотку, которая укладывается в конструктивные пазы сердечника. Именно способ организации или укладки обмотки ротора является ключевым критерием классификации этих машин.

Двигатели с короткозамкнутым ротором (АДКР)

Здесь используется обмотка в виде алюминиевых, медных или латунных стержней, которые вставляются в пазы сердечника и с обеих сторон замыкаются дисками (кольцами). Тип соединения этих элементов зависит от мощности двигателя: для малых значений используют метод совместной отливки дисков и стержней, а для больших – раздельное изготовление с последующей сваркой между собой. Обмотка статора подключается с использованием схем «треугольника» или «звезды».

Двигатели с фазным ротором

К сети подключается трехфазная обмотка ротора, посредством контактных колец на основном валу и щеток. За основу принимается схема «звезда». На рисунке внизу представлена типичная конструкция такого двигателя.

Принцип работы и число оборотов асинхронных двигателей

Данный вопрос рассмотрим на примере АДКР, как наиболее распространенного типа электродвигателей подъемно-транспортном и обрабатывающем оборудовании. Напряжение от сети подается на обмотку статора, каждая из трех фаз которой смещена геометрически на 120°. После подачи напряжения возникает магнитное поле, создающее путем индукции ЭДС и ток в обмотках ротора. Последнее вызывает электромагнитные силы, заставляющие ротор вращаться. Еще одна причина, по которой все это происходит, а именно, возникает ЭДС, является разность оборотов статора и ротора.

Одной из ключевых характеристик любого АДКР является частота вращения, расчет которой можно вести по следующей зависимости:

n = 60f / p, об/мин

где f – частота сетевого напряжения, Гц; р – число полюсных пар статора.

Все технические характеристики указываются на металлической табличке, закрепленной на корпусе. Но если она отсутствует по какой-то причине, то определить число оборотов нужно вручную по косвенным показателям. Как правило, используется три основных метода:

  • Расчет количества катушек. Полученное значение сопоставляется с действующими нормами для напряжения 220 и 380В (см. табл. ниже);

  • Расчет оборотов с учетом диаметрального шага обмотки. Для определения используется формула вида:

где 2p – число полюсов; Z1 – количество пазов в сердечнике статора; y – собственно, шаг укладки обмотки.

Стандартные значения оборотов:

  • Расчет числа полюсов по сердечнику статора. Используются математические формулы, где учитываются геометрические параметры изделия:

2p = 0,35Z1b / h или 2p = 0,5Di / h,

где 2p – число полюсов; Z1 – количество пазов в статоре; b – ширина зубца, см; h – высота спинки, см; Di – внутренний диаметр, образованный зубцами сердечника, см.

После этого по полученным данным и магнитной индукции нужно определить количество витков, которое сверяется с паспортными данными двигателей.

Способы изменения оборотов двигателя

Регулировка оборотов любого трехфазного электродвигателя, используемого в подъемно-транспортной технике и оборудовании, позволяет добиться требуемых режимов работы точно и плавно, что далеко не всегда возможно, например, за счет механических редукторов. На практике используется семь основных методов коррекции скорости вращения, которые делятся на два ключевых направления:

  1. Изменение скорости магнитного поля в статоре. Достигается за счет частотного регулирования, переключения числа полюсных пар или коррекции напряжения. Следует добавить, что эти методы применимы для электродвигателей с короткозамкнутым ротором;
  2. Изменение величины скольжения. Этот параметр можно откорректировать за счет питающего напряжения, подключения дополнительного сопротивления в электрическую цепь ротора, применения вентильного каскада или двойного питания. Используется для моделей с фазным ротором.
Читайте так же:
Как регулировать плуг на мотоблоке мтз

Наиболее востребованными методами являются регулирование напряжения и частоты (за счет применения преобразователей), а также изменение количества полюсных пар (реализуется путем организации дополнительной обмотки с возможностью переключения).

Типичные схемы регуляторов оборотов

На рынке сегодня есть широкий выбор регуляторов и частотных преобразователей для асинхронных двигателей. Тем не менее, для бытовых нужд подъемного или обрабатывающего оборудования вполне можно сделать расчет и сборку на микросхеме самодельного прибора на базе тиристоров или мощных транзисторов.

Ниже представлен пример схемы достаточно мощного регулятора для асинхронного двигателя. За счет чего можно добиться плавного контроля параметров его работы, снижения энергопотребления до 50%, расходов на техническое обслуживание.

Данная схема является сложной. Для бытовых нужд ее можно значительно упростить, используя в качестве рабочего элемента симистор, например, ВТ138-600. В этом случае схема будет выглядеть следующим образом:

Обороты электродвигателя будут регулироваться за счет потенциометра, который определяет фазу входного импульса, открывающего симистор.

Как можно судить из информации, представленной выше, от оборотов асинхронного двигателя зависят не только параметры его работы, но и эффективность функционирования питаемого подъемного или обрабатывающего оборудования. В торговой сети сегодня можно приобрести самые разнообразные регуляторы, но также можно совершить расчет и собрать эффективное устройство своими руками.

Скорость вращения двигателя регулирование

Как мы уже знаем из курса ТОЭ, частота вращения ротора определяется по формуле:

Синхронная частота вращения зависит от частоты приложенного напряжения и количества пар полюсов

Исходя из этого, можно сделать вывод, что изменять скорость асинхронных ЭД можно с помощью изменения скольжения, частоты и числа пар полюсов.

Способы регулирования бывают разные, например механические муфты, редукторы, различные шестерёнчатые трансмиссии или есть способ изменения количества полюсов обмоток ЭД. Но в рамках данной статьи поговорим о методах регулировки ЭД с помощью изменения электрических параметров: регулировки напряжения питания ЭД и настройки частоты питающего напряжения и с помощью изменения активного сопротивления в роторной цепи.

Данный метод регулирования скорости асинхронного ЭД широко используется в машинах с фазным ротором. При этом в роторную цепь подсоединяется дополнительный реостат, которым можно достаточно плавно увеличивать номинал сопротивления. С ростом сопротивления, скольжение ЭД увеличивается, а скорость вращения снижается. Т.е, происходит регулировка скорости вниз от естественной характеристики.

Огромным минусом этого метода является его экономическая неэффективность, т.к с ростом скольжения, потери в роторной цепи существенно увеличиваются, т.е, КПД двигателя стремительно падает.
Плюс к этому, механическая характеристика двигателя становится более мягкой и пологой, поэтому незначительное изменение момента нагрузки на валу ЭД, вызывает резкое изменение частоты вращения.

Регулирование скорости ЭД этим способом крайне не эффективно, но, несмотря на это факт, все еще используется в ЭД с фазным ротором.

Этот способ подразумевает включения в питающую цепь автотрансформатора (АТР), перед статорной обмоткой, после питающих проводов. При этом, если понизить уровень напряжения на выходе АТР, то ЭД будет работать на пониженном напряжении.

Это в свою очередь снизит частоты вращения, при постоянном моменте нагрузки, а также к снижению перегрузочной способности ЭД. Так как с снижением уровня питания, максимальный момент асинхронного ЭД снижается в квадрат раз. Кроме этого момент снижается быстрее, чем ток в рроторной цепи, а поэтому, увеличиваются и потери, с последующим нагревом ЭД.

Способ регулировки напряжения, возможен только по направлению вниз от естественной характеристики, так как повышать напряжение выше номинального уровня категорически не приветствуется, ведь это приведет к огромным потерям в двигателе, перегреву и неисправности.

Кроме АТР, можно использовать тиристорный регулятор напряжения и аналогичные схемотехнические решения, в том числе и с использованием микроконтроллеров.

При таком методе, к ЭД подсоединяют преобразователь частоты (ПЧ). Например Omron, Hitachi и т.п ,(например в флюорографе ФМЦ). В простых вариантах это тиристорный ПЧ. Регулировка скорости происходит с помощью регулировки частоты питающего напряжения f, потому, что она оказывает влияние на синхронную скорость вращения ЭД.

С снижением частоты , перегрузочная способность ЭД также снижается, чтобы этого не допустить, необходимо повысить величину напряжения U1. Номинал на который требуется повысить, зависит от типа привода. Если регулирование осуществляется с постоянным моментом нагрузки на валу, то напряжение требуется изменять пропорционально регулировки частоты (при снижении скорости). В случае увеличения скорости этого делать не стоит, напряжение должно быть на номинальных значениях, иначе это может причинить вред ЭД.

Если регулировка скорости осуществляется с постоянной мощностью электродвигателя, то изменение U1 требуется осуществлять пропорционально корню квадратному изменения f1.

При настройки установок с вентиляторной характеристикой, требуется регулировать U1 пропорционально квадрату изменения f1.

Регулирование способом изменения частоты, является наиболее лучшим вариантом для асинхронных двигателей на текущий момент, т.к при нем осуществляется регулирование скорости в достаточно широком диапазоне, без существенных потерь и падения перегрузочных способностей ЭД.

Обычно регулирование оборотов для двигателей на 220 вольт осуществляют с помощью тиристоров. Типовой схемой считается подсоединение электродвигателя в разрыв анодной цепи тиристора. Но во всех подобных схемах должен быть надежный контакт. И поэтому их нельзя применить в регулировании частоты вращения коллекторных двигателей, так как механизм щеток искусственно создает небольшие обрывы цепи.

Такой метод возможен только в многоскоростных асинхронных ЭД с короткозамкнутым ротором, т.к число полюсов этого ротора, всегда совпадает с полюсами статора.

В соответствии с формулой в начале страницы, скорость ЭД можно настраивать и изменением числа пар полюсов. Причём, в данном случае изменение скорости будет ступенчато, т.к как количество полюсов бывает только – 1,2,3,4,5.

Изменение их числа достигается с помощью переключения катушечных групп обмотки статора. При этом катушки коммутируются различными схемами, например “звезда — звезда” или “звезда – двойная звезда”. При соединении “звезда — звезда” получается изменение количества полюсов в соотношении 2:1. При этом будет постоянная мощность двигателя при переключении. При схеме “звезда – двойная звезда” изменяется количество полюсов в таком же соотношении, но еще обеспечивается постоянный момент двигателя.

Применение этого метода регулирования оправдано сохранением КПД и коэффициента мощности при переключении. Серьезным недостатком способа является более сложная конструкция ЭД, а также увеличение его стоимости.

Регулировка скорости вращения электромотора

Главная Электродвигатели Электродвигатели с параллельным возбуждением Регулирование скорости вращения электродвигателя

Читайте так же:
Регулировка клапанов мото 150

Основным преимуществом электродвигателей с параллель­ным возбуждением является возможность широкого и плавного регулирования их скорости вращения.

Уравнения, выведенные в особенностях электродвигателей постоянного тока , показывают, что искусствен­ная регулировка скорости вращения может производиться тремя способами: изменением сопротивления якорной цепи, изменением магнитного потока и изменением напряжения, под­водимого к якорю.

Регулирование скорости вращения изменением сопротивления якорной цепи. Для регулирования скорости вращения электро­двигателя в цепь якоря последовательно включают дополни­тельные сопротивления ( см. рис. 10 ). Уравнение (30) показы­вает, что каждому новому значению дополнительного сопро­тивления соответствует своя искусственная механическая характеристика. То же самое относится и к скоростным харак­теристикам. Анализ этого уравнения показывает, что между сопротивлением якорной цепи и скоростью вращения сущест­вует линейная зависимость, т. е. при любом значении R ха­рактеристики электродвигателя остаются прямолинейными и при холостом ходе проходят через точку п = п . Очевидно, чем вы­ше величина дополнительного сопротивления, тем мягче искус­ственная характеристика электродвигателя (рис. 12). Это означает, что при одной и той же нагрузке скорость электро­двигателя тем ниже, чем выше величина дополнительного сопротивления, включенного в якорную цепь. Уменьшение скорости объясняется дополнительным падением напряжения в добавочном сопротивлении.

Процесс перехода от одной скорости к другой происходит следующим образом. Допустим, электродвигатель, развивая мо­мент М = М с , работает устойчиво на естественной характеристике а в точке 1 (контакты 1У, 2У и 3У на рис. 10 замкнуты). Если необходимо снизить скорость вращения электродвигате­ля, размыкают контакт 1У и тем самым в цепь якоря вводят дополнительное сопротивле­ние R 1 . Согласно уравне­нию (30) электродвигатель должен перейти на характери­стику b, соответствующую но­вому значению сопротивления якорной цепи. Электродвига­тель обладает значительной инерцией и при переключении сопротивлений скорость его вращения мгновенно изменить­ся не может. Поэтому в первый момент электродвигатель пере­ходит на работу в соответству­ющей точке 2 на характеристи­ке b. При этом ток якоря и вращающий момент уменьша­ются, нарушается равновесие моментов (М<М c ) и скорость электродвигателя начинает сни­жаться до тех пор, пока снова не восстановится равновесие мо­ментов (М = М с ). Следовательно, устойчивая работа электро­двигателя будет теперь в точке 3 на характеристике b.

Аналогичным образом происходит переход на характери­стики с и d при включении сопротивлений R 2 и R 3 .

Для увеличения скорости вращения электродвигателя не­обходимо отключить часть дополнительного сопротивления. На­пример, если электродвигатель устойчиво работает в точке 7 на характеристике d, то при отключении сопротивления R 3 (при замыкании контактов 3У) происходит переход на работу по характеристике с. При этом первоначально (в точке 8) рез­ко увеличивается ток и момент электродвигателя и скорость начинает возрастать. В точке 5 восстанавливается равновесие моментов и увеличение скорости прекращается. При последо­вательном отключении остальных ступеней регулировочного реостата происходит постепенное возрастание скорости враще­ния до величины n­ 1 .

Данный способ регулирования скорости вращения отличает­ся простотой электрической схемы и применяется сравнитель­но часто для электродвигателей крановых механизмов. Однако ему присущи и некоторые существенные недостатки. В частно­сти, регулирование скорости рассмотренным способом сопро­вождается большими .потерями мощности в реостате. Поэтому стараются применять его лишь в тех случаях, когда мощность электродвигателя невелика или снижение скорости вращения должно быть кратковременным. Большим недостатком явля­ется также громоздкость и высокая стоимость регулировочно­го реостата, который должен быть рассчитан на номинальный ток электродвигателя. Это заставляет уменьшать число ступеней реостата и предусматривать специальные меры для его охлаж­дения.

Регулирование скорости вращения изменением магнитного потока. Если в цепь обмотки возбуждения включить последо­вательно реостат (см. рис. 10), то скорость вращения электро­двигателя с параллельным возбуждением можно регулировать изменением магнитного потока. Для этого необходимо изменять величину сопротивления цепи возбуждения. Изменение сопро­тивления приводит к изменению тока возбуждения и, следова­тельно, к изменению магнитного потока электродвигателя. Очевидно, при отсутствии дополнительного сопротивления в це­пи возбуждения магнитный поток электродвигателя имеет максимальное значение. Ему соответствуют естественные скоро­стная и механическая характеристики.

При введении же дополнительного сопротивления в цепь возбуждения магнитный поток уменьшается, а скорость уве­личивается, причем, различным значениям магнитного потока соответствуют различные искусственные скоростная и механиче­ская характеристики (рис. 13). Уравнения этих характеристик н.ичем не отличаются от уравнений (25) и (29).

Из уравнений вытекает, что характеристики при различных значениях магнитного потока остаются прямолинейными, причем меньшим значениям магнитного потока соответству­ют большие значения скорости холостого хода. По мере сни­жения магнитного потока воз­буждения жесткость характери­стик электродвигателя несколь­ко уменьшается, что объясняет­ся влиянием реакции якоря.

Как было показано, в слу­чае регулирования скорости изменением сопротивления в цепи якоря переход с одной характеристики на другую осущест­вляется практически при постоянной скорости. Это объясняется малой индуктивностью якоря, благодаря чему ток якоря изме­няется практически мгновенно.

Обмотка же возбуждения электродвигателя .параллельного возбуждения обладает значительной индуктивностью. Поэтому в случае регулирования скорости изменением сопротивления цепи возбуждения переход с одной характеристики на другую осуществляется по так называемым динамическим ха­рактеристикам, которые могут быть построены в результате расчета переходных процессов. На рис. 13 динамические харак­теристики показаны пунктирной линией.

Регулирование скорости вращения электродвигателей с па­раллельным возбуждением изменением магнитного потока со­провождается незначительными потерями мощности в регули­ровочном реостате и является экономичным. Незначительные потери дают возможность использовать реостат небольших габаритов и веса, с большим числом регулировочных ступеней, что позволяет получить плавное, практически бесступенчатое регулирование скорости.

Недостатком данного способа регулирования скорости яв­ляется ухудшение коммутации и снижение перегрузочной спо­собности электродвигателя при повышенных скоростях. Скорость же при этом способе регулирования может изменяться только лишь в сторону увеличения по сравнению с номиналь­ной, что сильно ограничивает применение данного способа. При больших нагрузках данный способ регулирования скорости вообще неприменим, так как снижение магнитного потока уменьшает вращающий момент и при переходе к высшей ско­рости может возникнуть недопустимо большой ток.

Регулирование скорости вращения изменением напряжения на зажимах якоря (система генератор—двигатель). В целях ши­рокого и плавного регулирования скорости иногда применяют так называемую систему генератор—двигатель (сокращенно система Г—Д), которая позволяет использовать метод регули­рования скорости изменением напряжения, подводимого к якорю электродвигателя. При питании электродвигателя от сети такой метод совершенно неприменим. Его применение воз­можно лишь при питании электродвигателя от отдельного генератора.

Обычно система Г—Д состоит из приводного двигателя ПД, генератора Г с возбудителем В и исполнительного электродви­гателя ИД (рис. 14). Приводной электродвигатель питается от сети и служит для приведения во вращение генератора. Чаще всего в качестве приводного электродвигателя используется асинхронный короткозамкнутый электродвигатель, получающий питание от сети трехфазного тока. Он имеет постоянное на­правление вращения и вращается с постоянной скоростью. Ис­полнительный электродвигатель получает питание от генера­тора Г и приводит в действие механизм.

Читайте так же:
Двигатель однофазный асинхронный регулировка скорости

Генератор и исполнительный электродвигатель имеют неза­висимое возбуждение. Их обмотки возбуждения ОВГ и ОВД питаются от возбудителя В, небольшого генератора постоянно­го тока, сидящего на одном валу с приводным электродвигате­лем ПД и генератором Г. Если в цепь обмотки ОВГ включить регулировочный реостат, то, изменяя величину его сопротивле­ния, можно изменять скорость вращения исполнительного элек­тродвигателя, так как при этом будет меняться величина на­пряжения генератора. Действительно, для цепи генератор—двигатель по II закону Кирхгофа можно составить следующее уравнение:

где Е г и Е д — соответственно э.д.с. генератора и электродвига­теля;

R г и R д — соответственно сопротивление якорей генератора

и электродвигателя. Заменив э. д. с. электродвигателя, согласно выражению (7),. получим

Выражение (41) является уравнением скоростной характери­стики исполнительного электродвигателя в системе Г—Д. За­менив в нем ток якоря выражением (28), получим уравнение механической характеристики

Уравнения (41) и (42) показывают, что путем изменения Е г можно изменять скорость вращения исполнительного элект­родвигателя. Следовательно, при уменьшении сопротивления регулировочного реостата R p скорость исполнительного элект­родвигателя будет возрастать, а при увеличении сопротивле­ния—уменьшаться, так как э. д. с. генератора Е г зависит от величины тока в обмотке ОВГ.

Нетрудно заметить, что механические и скоростные харак­теристики электродвигателя в системе Г—Д представляют со­бой прямые линии. Скорость холостого хода определяется пер­вым членом правой части урав­нения (41) или (42) и не остает­ся постоянной величиной при различных значениях сопротив­ления R р , т. е. каждому значе­нию сопротивления R р соответст­вует своя скоростная и механи­ческая характеристики (рис. 15). Эти характеристики являются достаточно жесткими, что позво­ляет при применении специаль­ных регулируемых электродвига­телей получить широкий диапа­зон скоростей в пределах 1 : 100 и более, что является одним из основных положительных качеств системы Г—Д.

Иногда регулировочный реостат включают не только в цепь обмотки ОВГ, но в цепь обмотки возбуждения ИД, что дает воз­можность регулировать скорость вверх от номинальной.

Регулирование скорости по системе Г—Д является весьма экономичным, так как все переключения происходят в цепях обмоток возбуждения, где токи сравнительно невелики. Отно­сительно небольшие мощности и габариты регулировочных реостатов позволяют получить большое число регулировочных ступеней и, следовательно, достаточно плавное регулирование скорости. Возможно также применение реостатов со скользя­щими контактами, что позволяет получить бесступенчатое ре­гулирование скорости.

Система Г—Д очень удобна не только в отношении широты и плавности регулирования скорости. Она позволяет также очень просто производить реверс и торможение исполнительно­го электродвигателя. Так, для осуществления реверса необхо­димо, как известно, изменить полярность на зажимах якоря электродвигателя. Для этого достаточно изменить направление тока в обмотке ОВГ (или в обмотке ОВД). Для осуществления торможения достаточно отключить от возбудителя обмот­ку ОВГ. Небольшие размеры регулировочных реостатов позво­ляют широко использовать дистанционное управление систе­мой Г—Д, что также является большим ее преимуществом.

Основной недостаток системы генератор—двигатель — большое количество электрических машин, высокая стоимость и относительно низкий к. п. д. установки, что, естественно, ограничивает область применения дайной системы.

Самодельный вариатор скорости вращения электродвигателя

Эта самодельная схема может быть использована в качестве регулятора скорости для двигателя постоянного тока 12 В с номинальным током до 5 А или как диммер для 12 В галогенных и светодиодных ламп мощностью до 50 Вт. Управление идёт с помощью широтно-импульсной модуляции (ШИМ) при частоте следования импульсов около 200 Гц. Естественно частоту можно при необходимости изменить, подобрав по максимальной стабильности и КПД.

Схема ШИМ регулятора для мотора 12 В

В схеме используется Таймер 7555 для создания переменной ширины импульсов около 200 Гц. Он управляет транзистором Q3 (через транзисторы Q1 — Q2), который контролирует скорость электро двигателя или ламп освещения.

Регулятор оборотов электродвигателя 12в своими руками

Регулятор оборотов электродвигателя 12в своими руками

Похожие новости

Регулятор оборотов электродвигателя 12в своими руками

Регулятор оборотов электродвигателя 12в своими руками

Всем привет, наверно многие радиолюбители, также как и я, имеют не одно хобби, а несколько. Помимо конструирования электронных устройств занимаюсь фотографией, съемкой видео на DSLR камеру, и видео монтажом. Мне, как видеографу, был необходим слайдер для видео съемки, и для начала вкратце объясню, что это такое. Ниже на фото показан фабричный слайдер.

Слайдер предназначен для видеосъемки на фотоаппараты и видеокамеры. Он являются аналогом рельсовой системы, которая используется в широкоформатном кино. С его помощью создается плавное перемещение камеры вокруг снимаемого объекта. Другим очень сильным эффектом, который можно использовать при работе со слайдером, — это возможность приблизиться или удалиться от объекта съемки. На следующем фото изображен двигатель, который выбрал для изготовления слайдера.

В качестве привода слайдера используется двигатель постоянного тока с питанием 12 вольт. В интернете была найдена схема регулятора для двигателя, который перемещает каретку слайдера. На следующем фото индикатор включения на светодиоде, тумблер, управляющий реверсом и выключатель питания.

При работе такого устройства важно, чтоб была плавная регулировка скорости, плюс легкое включение реверса двигателя. Скорость вращения вала двигателя, в случае применения нашего регулятора, плавно регулируется вращением ручки переменного резистора на 5 кОм. Возможно, не только я один из пользователей этого сайта увлекаюсь фотографией, и кто-то ещё захочет повторить это устройство, желающие могут скачать в конце статьи архив со схемой и печатной платой регулятора. На следующем рисунке приведена принципиальная схема регулятора для двигателя:

Регулятор оборотов электродвигателя 12в своими руками

Регулятор оборотов электродвигателя 12в своими руками

Регулятор оборотов электродвигателя 12в своими руками

Регулятор оборотов электродвигателя 12в своими руками

Регулятор оборотов электродвигателя 12в своими руками

Регулятор оборотов электродвигателя 12в своими руками

Видео работы

Для плавности увеличения и уменьшения скорости вращения вала существует специальный прибор —регулятор оборотов электродвигателя 220в. Стабильная эксплуатация, отсутствие перебоев напряжения, долгий срок службы — преимущества использования регулятора оборотов двигателя на 220, 12 и 24 вольт.

Для чего нужен частотный преобразователь оборотов

Контроллеры оборотов входят в структуру многих приборов, так как они обеспечивают точность электрического управления. Это позволяет регулировать обороты в нужную величину.

Регулятор оборотов двигателя постоянного тока используется во многих промышленных и бытовых областях. Например:

Выбираем устройство

  1. Для коллекторных электродвигателей распространены векторные контроллеры, но скалярные являются надёжнее.
  2. Важным критерием выбора является мощность. Она должна соответствовать допустимой на используемом агрегате. А лучше превышать для безопасной работы системы.
  3. Напряжение должно быть в допустимых широких диапазонах.
  4. Основное предназначение регулятора преобразовывать частоту, поэтому данный аспект необходимо выбрать соответственно техническим требованиям.
  5. Ещё необходимо обратить внимание на срок службы, размеры, количество входов.
  • двигатель переменного тока природный контроллер;
  • привод;
  • дополнительные элементы.

Прибор может быть куплен в специализированных точках продажи, а можно сделать самому.

Схема регулятора оборотов вращения переменного тока

Существует универсальный прибор 12в для бесколлекторных двигателей.

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Читайте так же:
Как отрегулировать карбюратор триммера echo

Схема состоит из двух частей—логической и силовой. Микроконтроллер расположен на микросхеме. Эта схема характерна для мощного двигателя. Уникальность регулятора заключается в применении с различными видами двигателей. Питание схем раздельное, драйверам ключей требуется питание 12В.

Прибор триак

Регулятор оборотов электродвигателя 12в своими руками

Когда конденсатор достигает предельного порога напряжения 12в или 24в, срабатывает ключ. Симистр переходит в открытое состояние. При переходе напряжения сети через ноль, симистр запирается, далее конденсатор даёт отрицательный заряд.

Распространённые регулятор тиристор, обладающие простой схемой работы.

Тиристор, работает в сети переменного тока.

Регулятор оборотов электродвигателя 12в своими руками

Регулятор оборотов электродвигателя 12в своими руками

К источнику напряжения 24 вольт. Принцип действия заключаются в заряде конденсатора и запертом тиристоре, а при достижении конденсатором напряжения, тиристор посылает ток на нагрузку.

Сигналы, поступающие на вход системы, образуют обратную связь. Подробнее рассмотрим с помощью микросхемы.

Микросхема TDA 1085

Своими руками можно сделать прибор для гриндера, токарного станка по дереву, точила, бетономешалки, соломорезки, газонокосилки, дровокола и многого другого.

При сборе регулятора правильно выбирать резистор. Так как при большом резисторе, на старте могут быть рывки, а при маленьком резисторе компенсация будет недостаточной.

Регуляторы оборотов вращения однофазных и трехфазных двигателей 24, 12 вольт представляют собой функциональное и ценное устройство, как в быту, так и в промышленности.

Видео № 1. Одноканальный регулятор в работе. Меняет скорость кручения вала мотора посредством вращения ручки переменного резистора.

Видео № 3. Двухканальный регулятор в работе. Независимая установка скорости кручения валов моторов на базе подстроечных резисторов.

Функции и основные характеристики

Регулятор оборотов электродвигателя 12в своими руками

Одноканальный регулятор для мотора

Конструкция устройства

Регулятор оборотов электродвигателя 12в своими руками

Принцип работы

Регулятор оборотов электродвигателя 12в своими руками

Материалы и детали

Примечание 3. Для регулировки токов выше 1,5А транзистор КТ815Г заменяют на более мощный КТ972А (с максимальным током 4А). При этом рисунок печатной платы менять не требуется, так как распределение выводов у обоих транзисторов идентично.

Для дальнейшей работы нужно скачать архивный файл, размещенный в конце статьи, разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора (файл termo1 ), а монтажный чертеж (файл montag1 ) — на белом листе офисной (формат А4).

Регулятор оборотов электродвигателя 12в своими руками

Регулятор оборотов электродвигателя 12в своими руками

Для тестирования устройства необходимо из архива распечатать чертеж диска. Далее нужно наклеить этот чертеж (№ 1) на плотную и тонкую картонную бумагу (№ 2 ). Затем с помощью ножниц вырезается диск (№ 3).

Полученную заготовку переворачивают (№ 1 ) и к центру крепят квадрат черной изоленты (№ 2) для лучшего сцепления поверхности вала мотора с диском. Нужно сделать отверстие (№ 3) как указано на изображении. Затем диск устанавливают на вал мотора и можно приступать к испытаниям. Одноканальный регулятор мотора готов!

Используется для независимого управления парой моторов одновременно. Питание осуществляется от напряжения в диапазоне от 2 до 12 вольт. Ток нагрузки рассчитан до 1,5А на каждый канал.

Регулятор оборотов электродвигателя 12в своими руками

Принцип работы

Примечание.2. Для оперативной регулировки скорости кручения моторов подстроечные резисторы заменяют с помощью монтажного провода с резисторами переменного сопротивления с показателями сопротивлений, указанными на схеме.

Понадобится печатная плата размером 30×30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита толщиной 1-1,5 мм. В таблице 2 приведен список радиокомпонентов.

Процесс сборки

Чертеж монтажной платы наклеивают к токоведущим дорожкам на противоположной стороне печатной платы. Формируют отверстия на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпасть. Производится цоколёвка транзистора КТ815. Для проверки нужно временно соединить монтажным проводом входы 1 и 2 .

Регулятор оборотов электродвигателя 12в своими руками

Регулятор оборотов электродвигателя 12в своими руками

В АРХИВЕ представленные необходимые схемы и чертежи для работы. Эмиттеры транзисторов помечены красными стрелками.

Регулятор оборотов электродвигателя 12в своими руками

Регулятор оборотов двигателя постоянного тока схема на 12 вольт

Двигатель подключен в цепь к полевому транзистору который управляется широтно-импульсной модуляцией осуществляемой на микросхеме таймере NE555, поэтому и схема получилась такой простой.

ШИМ регулятор реализован с помощью обычного генератора импульсов на нестабильном мультивибраторе, генерирующий импульсы с частотой следования 50 Гц и построенного на популярном таймере NE555. Сигналы поступающие с мультивибратора создают поле смещения на затворе полевого транзистора. Длительность положительного импульса настраивается при помощи переменного сопротивления R2. Чем выше длительность положительного импульса поступающего на затвор полевого транзистора, тем большая мощность подается на электродвигатель постоянного тока. И на оборот чем меньше длительность импульса, тем слабее вращается электродвигатель. Эта схема прекрасно работает от аккумуляторной батареи на 12 вольт.

Регулирование оборотов двигателя постоянного тока схема на 6 вольт

Регулировка оборотов в этой схеме достигается подачей на электромотор импульсов напряжения, различной длительности. Для этих целей используются ШИМ (широтно-импульсные модуляторы). В данном случае широтно-импульсное регулирование обеспечивается микроконтроллер PIC. Для управления скоростью вращения двигателя используются две кнопки SB1 и SB2, «Больше» и «Меньше». Изменять скорость вращенияможно только при нажатом тумблере «Пуск». Длительность импульса при этом изменяется, в процентном отношении к периоду, от 30 — 100%.

Устройство собрано на печатной плате размерами 61×52мм. Скачать рисунок печатной платы и файл прошивки можно по ссылке выше. (Смотри в архиве папку 027-el )

Управление скоростью вращения однофазных двигателей

Изменение оборотов асинхронного двигателя

Однофазные асинхронные двигатели питаются от обычной сети переменного напряжения 220 В.

Наиболее распространённая конструкция таких двигателей содержит две (или более) обмотки — рабочую и фазосдвигающую. Рабочая питается напрямую, а дополнительная через конденсатор, который сдвигает фазу на 90 градусов, что создаёт вращающееся магнитное поле. Поэтому такие двигатели ещё называют двухфазные или конденсаторные.

Схема обмоток конденсаторного электромотораКонденсаторный двигатель с фазосдвигающей обмоткой

Регулировать скорость вращения таких двигателей необходимо, например, для:

  • изменения расхода воздуха в системе вентиляции
  • регулирования производительности насосов
  • изменения скорости движущихся деталей, например в станках, конвеерах

В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума установки, установить необходимую производительность.

Способы регулирования

Рассматривать механические способы изменения скорости вращения, например редукторы, муфты, шестерёнчатые трансмиссии мы не будем. Также не затронем способ изменения количества полюсов обмоток.

Рассмотрим способы с изменением электрических параметров:

  • изменение напряжения питания двигателя
  • изменение частоты питающего напряжения

Регулирование напряжением

Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя — разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:

n1 скорость вращения магнитного поля

n2 — скорость вращения ротора

При этом обязательно выделяется энергия скольжения — из-за чего сильнее нагреваются обмотки двигателя.

Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз — то есть, снижением питающего напряжения.

Читайте так же:
Регулировка развал схождения своими руками таврия

При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.

Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.

На практике для этого применяют различные схемы регуляторов.

Автотрансформаторное регулирование напряжения

Автотрансформатор — это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

Регулировка скорости асинхронного двигателя

На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.

Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.

Преимущества данной схемы:

      • неискажённая форма выходного напряжения (чистая синусоида)
      • хорошая перегрузочная способность трансформатора

      Недостатки:

          • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
          • все недостатки присущие регулировке напряжением

          Регулирование напряжением скорости вращения двигателяУправление скоростью двигателя трансформатором

          Тиристорный регулятор оборотов двигателя

          В данной схеме используются ключи — два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

          Принципиальная электронная схема регулятора оборотов двигателя вентилятора

          Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно «отрезается» кусок вначале или, реже в конце волны напряжения.

          Таким образом изменяется среднеквадратичное значение напряжения.

          Данная схема довольно широко используется для регулирования активной нагрузки — ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).

          Ещё один способ регулирования — пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно — шумы и рывки при работе.

          Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:

          • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
          • добавляют на выходе конденсатор для корректировки формы волны напряжения
          • ограничивают минимальную мощность регулирования напряжения — для гарантированного старта двигателя
          • используют тиристоры с током в несколько раз превышающим ток электромотора

          Достоинства тиристорных регуляторов:

              • низкая стоимость
              • малая масса и размеры

              Недостатки:

                  • можно использовать для двигателей небольшой мощности
                  • при работе возможен шум, треск, рывки двигателя
                  • при использовании симисторов на двигатель попадает постоянное напряжение
                  • все недостатки регулирования напряжением

                  Используется для изменения оборотов вентилятораУстройство тиристорного регулятора

                  Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом.

                  Транзисторный регулятор напряжения

                  Как называет его сам производитель — электронный автотрансформатор или ШИМ-регулятор.

                  Электронный трансформатор для двигателя вентилятора

                  Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы — полевые или биполярные с изолированным затвором (IGBT).

                  Электронная схема трансформатора регулировки вращения двигателя

                  Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.

                  Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.

                  Выходной каскад такой же как и у частотного преобразователя, только для одной фазы — диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.

                  Плюсы электронного автотрансформатора:

                        • Небольшие габариты и масса прибора
                        • Невысокая стоимость
                        • Чистая, неискажённая форма выходного тока
                        • Отсутствует гул на низких оборотах
                        • Управление сигналом 0-10 Вольт

                        Слабые стороны:

                              • Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
                              • Все недостатки регулировки напряжением

                              Частотное регулирование

                              Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина — не было дешёвых силовых высоковольтных транзисторов и модулей.

                              Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие — массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

                              На данный момент частотное преобразование — основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.

                              Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.

                              Однофазные двигатели могут управляться:

                              • специализированными однофазными ПЧ
                              • трёхфазными ПЧ с исключением конденсатора

                              Преобразователи для однофазных двигателей

                              В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей — INVERTEK DRIVES.

                              Это модель Optidrive E2

                              Частотный преобразователь для однофазных двигателей

                              Для стабильного запуска и работы двигателя используются специальные алгоритмы.

                              При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:

                              f — частота тока

                              С — ёмкость конденсатора

                              В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:

                              Преобразователь частоты для однофазного двигателя

                              Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя — в некоторых моделях это сделать довольно сложно.

                              Преимущества специализированного частотного преобразователя:

                                    • интеллектуальное управление двигателем
                                    • стабильно устойчивая работа двигателя
                                    • огромные возможности современных ПЧ:
                                      • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
                                      • многочисленные защиты (двигателя и самого прибора)
                                      • входы для датчиков (цифровые и аналоговые)
                                      • различные выходы
                                      • коммуникационный интерфейс (для управления, мониторинга)
                                      • предустановленные скорости
                                      • ПИД-регулятор

                                      Минусы использования однофазного ПЧ:

                                            • ограниченное управление частотой
                                            • высокая стоимость

                                            Использование ЧП для трёхфазных двигателей

                                            Частотный преобразователь Тошиба

                                            Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:

                                            Из однофазного двигателя удаляют конденсатор

                                            Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:

                                            Расположение обмоток

                                            Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого — магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.

                                            В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.

                                            При работе без конденсатора это приведёт к:

                                            • более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
                                            • разному току в обмотках

                                            Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна

                                            Преимущества:

                                                    • более низкая стоимость по сравнению со специализированными ПЧ
                                                    • огромный выбор по мощности и производителям
                                                    • более широкий диапазон регулирования частоты
                                                    • все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)

                                                    Недостатки метода:

                                                    голоса
                                                    Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector