Taxitaxitaxi.ru

Эволюшн
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулирование скорости вращения коллекторного двигателя постоянного тока

Регулирование скорости вращения коллекторного двигателя постоянного тока

Двигатели постоянного тока и мотор-редукторы, созданные на их основе, нуждаются в надежной системе управления скоростью вращения вала. Простым и удобным методом решения проблемы является применение широтно-импульсной модуляции (ШИМ). Способ основан на преобразовании постоянного напряжения в импульсное. При этом управление частотой вращения осуществляют путем изменения длительности подающегося импульса.

Например, по такому же принципу используют ШИМ схему в осветительных приборах для регулировки яркости свечения светодиодных ламп. Так как у светодиода небольшое время затухания частота работы устройства регулирования имеет большое значение. Качественные приборы должны полностью исключать мерцание при пониженной яркости свечения.

Управление двигателями постоянного тока методом ШИМ стало возможным благодаря силе инерции. После прекращения подачи напряжения на обмотки вал электродвигателя останавливается не сразу, продолжая движение по инерции. Путем кратковременной подачи напряжения с определенным периодом можно добиться плавного регулирования скорости вращения вала. При этом главным регулирующим параметром является размер паузы между импульсами.

Применение устройства управления для двигателя постоянного тока

Этот метод управления двигателем постоянного тока позволяет плавно изменять скорость вращения вала в широких пределах. ШИМ делает возможным изменение параметров работы двигателя в автоматическом режиме в соответствии с установленными данными. Необходимую информацию регулятор оборотов коллекторного двигателя получает от пользователя или специального датчика, который определяет, температуру, скорость вращения или любой другой параметр. Например, в воздушных системах охлаждения регулятор оборотов изменяет скорость вращения вентилятора на основе данных, полученных от датчика температуры. Это позволяет автоматически замедлять скорость потока воздуха при низкой температуре и увеличивать при высокой.

Схема управления коллекторным двигателем постоянного тока

Простую схему управления двигателем постоянного тока можно собирать из полевого транзистора. Он играет роль электронного ключа, который переключает схему питания двигателя после подачи напряжения на базу. Электронный ключ остается открытым на время, соответствующее длительности импульса.

ШИМ сигнал характеризуют коэффициентом заполнения, который равен обратной величие скважности. Коэффициент заполнения равен отношению продолжительности импульса к периоду его подачи. Скорость движения вала двигателя будет пропорциональна значению коэффициента заполнения. Поэтому, если частота ШИМ сигнала слишком низкая для обеспечения стабильной работы, то вал двигателя будет вращаться заметными рывками. Чтобы гарантировать плавное регулирование и стабильную работу частота должна превышать сотни герц.

Оптимальные значения частоты ШИМ сигнала

Частота может варьироваться в широких пределах от нескольких десятков до нескольких сотен герц. Благодаря емкостной нагрузке происходит сглаживание импульсов. В итоге на двигатель подается «постоянное» напряжение средней величины в зависимости от параметров управляющей системы. Например, если двигатель получает питание от сети напряжением 10В, и к нему подключить регулятор с длительностью импульса равной половине периода подачи, то эффект будет таким же, как при подаче 5В на двигатель напрямую.

Сложности при ШИМ регулировании скорости двигателя постоянного тока

ШИМ является популярным методом регулирования аналоговым напряжением в различных схемах. При использовании этого способа регулирования пользователь может столкнуться с непредсказуемым поведением двигателя. Например, вал может начать вращение в обратную сторону. Это происходит при низких емкостных нагрузках. В коллекторных двигателях в процессе работы происходит постоянное переключение обмоток якоря. Когда подключают регулятор, начинает происходить отключение и включение питание с определенной частотой. Дополнительная коммутация в сочетании с коллекторной может привести к проблемам с эксплуатацией двигателя. Поэтому устройства управления с ШИМ регулированием двигателя должны быть тщательно продуманы и проработаны.

Читайте так же:
Регулировка клапана турбины лагуна 2

Также причиной нестабильной работы электродвигателя может стать факт влияния силы тока на скорость вращения ротора, которая находится в зависимости от уровня приложенного напряжения. Проблемы могут возникнуть при эксплуатации двигателей на малой скорости по отношению к номинальному значению.

Например, у пользователя есть двигатель, который при номинальном напряжение вращает ротор со скоростью 10об/сек. Чтобы понизить скорость до 1 об/сек недостаточно просто снизить напряжение до 1В. Подобрать подходящее значение подаваемого напряжения сложно и если пользователю и удастся, то при незначительном изменении условий эксплуатации скорость снова изменится.

Решением проблемы является применение системы автоматического регулирования или кратковременное включение электродвигателя на полную мощность. Движение ротора будет происходить рывками, но при правильно подобранной частоте и длительности подаваемых импульсов можно сделать вращение более стабильным. Так, добиваются устойчивого движения вала электродвигателя с любой скоростью, которая не будет меняться в зависимости от нагрузки.

Реализация ШИМ

Многие модели современных ПЛК контроллеров предоставляют возможность организации ШИМ. Но иногда доступных каналов оказывается недостаточно и приходится использовать программу обработки прерывай.

Алгоритм реализации ШИМ:

  1. В начале каждого импульса ставим единицу и ждем повышения значения до заданного уровня.
  2. Сбрасываем линию на ноль.

Длительность импульса легче отследить с определенной периодичностью или ступенями. Например, десять регулировочных ступеней соответствуют 10% от максимального значения. Прежде всего необходимо определиться с частотой импульсов и количеств ступеней регулирования. Далее, умножают полученные значения. Результат произведения даст необходимую частоту прерываний таймера.

При желании можно выбрать подходящую частоту таймера или количество ступеней регулирования и путем расчетов находят необходимую частоту импульсов.

Так же по теме регулирования скорости коллекторного двигателя предлагаем статью "Управление коллекторным двигателем постоянного тока методом ШИМ"

Виды, применение и устройство регулятора оборотов коллекторного двигателя

Устройство коллекторных двигателей имеет свои особенности, в частности это относится к такому узлу, как регулятор оборотов коллекторного электродвигателя. Существуют разные системы управления, которые мы рассмотрим ниже.

Варианты систем управления на заводских моделях движков

Реостатные регуляторы оборотов представляют собой систему, состоящую из реостата и сервопривода. С их помощью пассивная нагрузка включается последовательно, а сервопривод механически регулирует сопротивление. После подключения нагрузки излишки электроэнергии преобразуются в тепло. Это самый дешевый и простой вид регулятора, устанавливающийся на маломощных моделях.

К его недостаткам можно отнести:

  • Неоправданные тепловые потери, ведущие к снижению ресурса аккумуляторной батареи.
  • Часто возникающие потери на движущихся контактах реостата.
  • Перегрев конструкции, во избежание которого требуется принудительный отвод тепла.
  • Быстрый износ двигателя.

Поэтому реостатные регуляторы чаще используются в «любительских» устройствах (моделях, самодельных станках и т.д.).

Читайте так же:
Как регулировать обороты шуруп

Полупроводниковые регуляторы оборотов применяются чаще, так как энергия аккумуляторов используется более экономно. Импульсный характер подачи питания на двигатель позволяет управлять частотой вращения за счет изменения длительности импульсов. На рынке представлены самые разнообразные виды полупроводниковых регуляторов, включая модели с расширенным функционалом (вентилятором и другими приспособлениями).

Также регулировать обороты можно с помощью:

  • заводских плат от бытовой техники (пылесосов, миксеров и т.п.);
  • ЛАТРов;
  • кнопок от электроинструментов;
  • бытовых регуляторов освещения.

Однако при их применении могут возникать некоторые неудобства. Снижение оборотов двигателя ведет к резкому падению выдаваемой им мощности, поскольку напряжение питания понижается. Это не сказывается на работе маломощных насосов, вентиляторов и другой подобной техники, но для самодельных станков такая схема не годится.

Тахогенератор является более надежным устройством, так как он не позволяет двигателю терять мощность, даже если частота вращения ротора значительно снижается. Обычно тахогенератор устанавливается на заводских моделях моторов. Его задача – сообщение количества оборотов якоря и передача их на плату управления, которая, в свою очередь, устанавливает количество оборотов на необходимом уровне. Существует много схем регулирования оборотов с помощью тахогенератора.

Малогабаритные коллекторные двигатели различаются по размеру, числу максимальных оборотов, показателю энергопотребления, весу и другим характеристикам, что отражается на подборе системы управления. От типа исполнительного устройства, на котором будет использоваться движок, зависит количество функций, выполняемых регулятором оборотов, и их комбинация.

Дополнительные возможности регуляторов оборотов коллекторных электродвигателей

Часто технические условия эксплуатации мотора требуют наличия у регулятора оборотов дополнительных функций, например:

  • Реверс. Если транспортное средство должно иметь задний ход, на двигатель устанавливается регулятор с возможностью переполюсовки. Режим реверса на полных оборотах необходим крайне редко, поэтому обычно мотор работает не на полную мощность.
  • Опторазвязка. Эта функция нужна регуляторам, рассчитанным на повышение напряжения. Например, в радиоприемниках питание и силовые цепи разъединяются с помощью гальванической развязки. Таким образом обеспечивается защита чувствительной радиоаппаратуры от импульсных наводок из силовых цепей электродвигателя и регулятора и повышается показатель стабильности ее работы.
  • Тормоз. Многие механизмы должны не только быстро набирать обороты, но и моментально останавливаться. Торможение бывает «жестким» и «мягким». В первом случае регулятор закорачивает обмотку двигателя единовременно, во втором – в импульсном режиме, благодаря чему обороты снижаются плавно.
  • ВЕС-система. Она подходит для механизмов с низковольтным питанием. Будучи встроенной в цепь вторичного питания, система обеспечивает подачу энергии на сервопривод и платы радиоуправления с одной батареи, и необходимость установки добавочной батареи отпадает.

Виды коллекторных электродвигателей

Выбор устройства регулятора оборотов коллекторного двигателя зависит от модели мотора, ваших финансовых возможностей, типа исполнительного механизма и других нюансов. Сейчас промышленность выпускает коллекторные двигатели постоянного и переменного тока со следующими принципами возбуждения:

  • параллельным;
  • последовательным;
  • смешанным.

При этом движки переменного тока бывают только с последовательным или параллельным возбуждением. Они работают следующим образом:

  • Электромагнитное поле возникает вследствие прохождения электрического тока через коммутированные обмотки ротора и статора.
  • Это поле приводит ротор в движение.
  • Передача тока на обмотки ротора осуществляется с помощью щеток, изготовленных из графита либо из смеси меди и графита.
Читайте так же:
Регулировка ближнего света авто

Реверсирование двигателя достигается путем изменения направления течения тока в роторе или статоре (во избежание перемагничивания сердечников направление обычно изменяется в роторе). Если изменить направление тока в обеих катушках, направление вращения мотора остается прежним.

Одной из причин популярности движков переменного тока является их способность работать и от переменного, и от постоянного тока. К тому же они отличаются простотой управления и изготовления.

Устройства этого типа устанавливаются на электроинструментах, бытовых приборах, легкомоторных моделях и транспортных средствах с малогабаритными двигателями. Такой недостаток, как ограниченный заряд аккумулятора, компенсируется малым потреблением электроэнергии, многофункциональностью и небольшими габаритами.

Виды и устройство регуляторов оборотов коллекторных двигателей

Коллекторные двигатели часто можно встретить в бытовых электроприборах и в электроинструменте: стиральная машина, болгарка, дрель, пылесос и т. д. Что совсем не удивительно, ведь коллекторные двигатели позволяют получать и высокие обороты, и большой крутящий момент (в том числе высокий пусковой момент) — что и нужно для большинства электроинструментов.

При этом коллекторные двигатели могут питаться как постоянным током (в частности — выпрямленным), так и переменным током от бытовой сети. Для управления скоростью вращения ротора коллекторного двигателя применяют регуляторы оборотов, о них и пойдет речь в данной статье.

Коллекторный двигатель

Для начала вспомним устройство и принцип работы коллекторного двигателя. Коллекторный двигатель включает в себя обязательно следующие части: ротор, статор и щеточно-коллекторный коммутационный узел. Когда питание подается на статор и на ротор, их магнитные поля начинают взаимодействовать, ротор начинает в итоге вращаться.

Питание на ротор подается через графитовые щетки, плотно прилегающие к коллектору (к ламелям коллектора). Для изменения направления вращения ротора, необходимо изменить фазировку напряжения на статоре или на роторе.

Регулятор оборотов коллекторного двигателя на TDA1085

Обмотки ротора и статора могут питаться от разных источников или же могут быть соединены параллельно либо последовательно друг с другом. Так различаются коллекторные двигатели параллельного и последовательного возбуждения. Именно коллекторные двигатели последовательного возбуждения можно встретить в большинстве бытовых электроприборов, поскольку такое включение позволяет получить устойчивый к перегрузкам двигатель.

Говоря о регуляторах оборотов, прежде всего остановимся на самой простой тиристорной (симисторной) схеме (смотрите ниже). Данное решение применяется в пылесосах, стиральных машинах, болгарках, и показывает высокую надежность при работе в цепях переменного тока (особенно от бытовой сети).

Работает данная схема достаточно незатейливо: на каждом периоде сетевого напряжения конденсатор заряжается через резистор до напряжения отпирания динистора, присоединенного к управляющему электроду основного ключа (симистора), после чего симистор открывается и пропускает ток к нагрузке (к коллекторному двигателю).

Простейший регулятор оборотов коллекторного двигателя

Схема простого регулятора оборотов коллекторного двигателя

Регулируя время зарядки конденсатора в цепи управления открыванием симистора, регулируют среднюю мощность подаваемую на двигатель, соответственно регулируют обороты. Это простейший регулятор без обратной связи по току.

Симисторная схема похожа на обычный диммер для регулировки яркости ламп накаливания, обратной связи в ней нет. Чтобы появилась обратная связь по току, например чтобы удерживать приемлемую мощность и не допускать перегрузок, необходима дополнительная электроника. Но если рассмотреть варианты из простых и незатейлевых схем, то за симисторной схемой следует реостатная схема.

Реостатная схема позволяет эффективно регулировать обороты, но приводит к рассеиванию большого количества тепла. Здесь требуется радиатор и эффективный отвод тепла, а это потери энергии и низкий КПД в итоге.

Схема регулятора оборотов

Более эффективны схемы регуляторов на специальных схемах управления тиристором или хотя бы на интегральном таймере. Коммутация нагрузки (коллекторного двигателя) на переменном токе осуществляется силовым транзистором (или тиристором), который открывается и закрывается один или несколько раз в течение каждого периода сетевой синусоиды. Так регулируется средняя мощность, подаваемая на двигатель.

Схема управления питается от 12 вольт постоянного напряжения от собственного источника или от сети 220 вольт через гасящую цепь. Такие схемы подходят для управления мощными двигателями.

Блок управления коллекторного двигателя

Принцип регулирования с микросхемами на постоянном токе — это конечно ШИМ — широтно-импульсная модуляция. Транзистор, например, открывается с строго заданной частотой в несколько килогрец, но длительность открытого состояния регулируется. Так, вращая ручку переменного резистора, устанавливают скорость вращения ротора коллекторного двигателя. Данный метод удобен для удержания малых оборотов коллекторного двигателя под нагрузкой.

Более качественное управление — именно регулировка по постоянному току. Когда ШИМ работает на частоте порядка 15 кГц, регулируя ширину импульсов, управляют напряжением при примерно одном и том же токе. Скажем, регулируя постоянное напряжение в диапазоне от 10 до 30 вольт, получают разные обороты при токе порядка 80 ампер, добиваясь требуемой средней мощности.

Если вы хотите изготовить простой регулятор для коллекторного двигателя своими руками без особых запросов к обратной связи, то можно выбрать схему на тиристоре. Потребуется лишь паяльник, конденсатор, динистор, тиристор, пара резисторов и провода.

Если же нужен более качественный регулятор с возможностью поддержания устойчивых оборотов при нагрузке динамического характера, присмотритесь к регуляторам на микросхемах с обратной связью, способным обрабатывать сигнал с тахогенератора (датчика скорости) коллекторного мотора, как это реализовано например в стиральных машинах.

Регулятор оборотов двигателя 220 вольт

Обычно регулирование оборотов для двигателей на 220 вольт осуществляют с помощью тиристоров. Типовой схемой считается подсоединение электродвигателя в разрыв анодной цепи тиристора. Но во всех подобных схемах должен быть надежный контакт. И поэтому их нельзя применить в регулировании частоты вращения коллекторных двигателей, так как механизм щеток искусственно создает небольшие обрывы цепи.

Двигатель вместе с силовым тиристором VS2 подключен в диагональ диодного моста VD3, на другую же поступает сетевое напряжение переменного тока 220 вольт. Кроме того, этот тиристор осуществляет контроль достаточно широкими импульсами, благодаря чему, непродолжительные обрывы цепи, с которыми работают все коллекторные двигатели, не влияют на устойчивую работу схемы.

Управляет первым тиристором транзистор VT1, подключенный по схеме генератора импульсов. Как только напряжение на конденсаторе станет достаточным для открытия первого транзистора, на управляющий вывод тиристора поступит положительный импульс. Тиристор откроется и теперь уже на втором тиристоре появится длительный управляющий импульс. И уже с него напряжение, которое фактически и влияет на величину оборотов, поступает на двигатель.

Частоту оборотов вращения электродвигателя подстраивают переменным сопротивлением R1. Так как в цепь второго тиристора подсоединена индуктивная нагрузка, то возможно спонтанное открывание тиристора, даже в момент отсутствии управляющего сигнала. Поэтому для блокировки этого, в схему включен диод VD2 который подсоединен параллельно обмотке L1 двигателя.

Во время настройки схемы регулятора оборотов двигателя желательно использовать стробоскоп, которым можно измерить частоту вращения электродвигателя либо обычный стрелочный вольтметр для переменного тока, который подключают параллельно двигателю.

С помощью подбора сопротивления R3 задают диапазон изменения напряжения от 90 до 220 вольт. Если при минимальных оборотах двигатель работает некорректно, то требуется уменьшить номинал резистора R2.

Эта схема хорошо подходит для регулировки скорости вращения вентилятора в зависимости от температуры.

В роли чувствительного элемента используется термистор. В результате его нагревания уменьшается его сопротивление, и поэтому на выходе операционного усилителя, наоборот напряжение увеличивается и через полевой транзистор управляет оборотами вентилятора.

Переменным сопротивлением P1 — можно задать наименьшую скорость вращения вентилятора при наименьшей температуре, а переменным сопротивлением P2 регулируют наибольшую скорость вращения при максимальной температуре.

В нормальных условиях настраиваем резистором P1 минимальные обороты двигателя. Затем нагревают датчик и сопротивлением P2 адают нужную частоту вращения вентилятора.

Схема управляет скоростью вентилятора в зависимости от показаний температур, с помощью обычного термистора с отрицательным температурным коэффициентом.

Схема настолько проста, что в ней присутствует только три радиокомпонента: регулируемый стабилизатор напряжения LM317T и два сопротивления, образующие делитель напряжения. Одно из сопротивлений — термистор с отрицательным ТКС, а другое — обычный резистор. Для упрощения сборки рисунок печатной платы привожу ниже.

Печатная плата регулятора оборотов вентилятора с датчиком температуры

В целях экономии, можно оснастить регулятором оборотов типовую болгарку. Такой регулятор для шлифования корпусов различной радиоэлектронной аппаратуры является незаменимым инструментом в арсенале радиолюбителя

Микросхема U2008B является ШИМ-регулятором оборотов коллекторных электродвигателей переменного напряжения. Изготавливается компанией TELEFUNKEN, чаще всего ее можно увидеть в схеме управления электродрелью, шаговой пилы, электролобзика и т.п., а также работает с двигателями от пылесосов, позволяя регулировать тягу. Встроенный контур плавного старта сощественно продлевает срок эксплуатации двигателей. Схемы регулировки на базе этого чипа можно также применять для регулировки мощности, например обогревателей.

Все современные дрели выпускают с встроенными в них регуляторами числа оборотов двигателя, но наверняка, в арсенале каждого радиолюбителя имеется старая советская дрель, у которых изменение числа оборотов не было задумано, что, резко снижает эксплуатационные характеристики.

Регулировать скорость вращения асинхронного безколлекторного двигателя можно с помощью настройки частоты питающего переменного напряжения. Данная схема позволяет регулировать скорость вращения в довольно широком диапазоне — от 1000 до 4000 оборотов в минуту.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector