Регулировка напряжения блока питания переменным резистором
Volt-info
Электроника, электротехника. Профессионально-любительские решения.
Блок регулирования напряжения и тока для простого лабораторного источника питания
Описание
В любой радиолюбительской мастерской не обойтись без источника питания с возможностью изменения величины напряжения в широких пределах. Представленное устройство предназначено для регулирования напряжения от полвольта почти до величины входного напряжения и регулирования величины ограничения тока нагрузки. При наличии готового нерегулируемого источника питания напряжением 20-30 В и допустимым током нагрузки до 5 А, этот блок позволит сделать источник универсальным.
Схема
За основу взята распространённая схема (рис.1), обсуждаемая на некоторых радиолюбительских форумах.
Рисунок 1. Вырезка из журнала Радио. |
Честно говоря, стабилизированной эту схему назвать нельзя однозначно, но тем не менее я рекомендую её для начинающих радиолюбителей, нуждающихся в регулируемом источнике питания. Схема хороша тем, что позволяет регулировать напряжение в широких пределах, а также ограничивать ток нагрузки, что исключает перегрузку источника питания при коротких замыканиях.
У этой схемы есть один существенный недостаток. При регулировании напряжения, оно изменяется не равномерно. От минимума напряжение нарастает очень медленно, но ближе к максимуму процесс становится настолько стремительным, что точная установка требуемого значения весьма затруднительна. По этому поводу на многих форумах не мало соплей и плевков. Не советую уподобляться истерикам и размазывать сопли по этому поводу, всё, что требуется от настоящего радиолюбителя – включать мозг.
Суть проста. Чтобы получить линейный характер регулирования при нелинейном изменении величины регулирования линейным элементом, нужно скорректировать его характеристику в сторону обратной нелинейности… Вот такая не шуточная шутка получилась 🙂
Предлагаю Вам свой вариант схемы, в котором применена отечественная элементная база и добавлен элемент коррекции нелинейности регулировки напряжения – рисунок 2.
Рисунок 2. Схема блока регулирования напряжения и ограничения тока нагрузки. |
Обратите внимание на подстроечный резистор R7. Его роль как раз и заключается в коррекции характеристики регулирования.
В качестве регулирующего элемента я применил транзистор КТ819ГМ (просто оказался в наличии). Он выполнен в массивном металлическом корпусе и рассчитан на ток коллектора до 15А. Этот транзистор необходимо размещать на радиаторе для эффективного теплоотвода.
В качестве шунта R2 я использовал параллельную спайку пяти двухваттных резисторов 5,1 Ом по 2 Вт каждый. Этот шунт я так же вынес за пределы платы, расположив рядом с радиатором транзистора.
У меня не оказалось переменного резистора 470 Ом, поэтому мне пришлось для R5 использовать резистор 1 кОм, но и при этом номинале ток регулируется достаточно равномерно.
Настройка схемы
Исходная схема (рисунок 1) практически не нуждается в настройке. Переработанная схема (рисунок 2) требует настройки коррекции характера регулирования напряжения. Настройка очень проста.
Подайте на вход напряжение питания (желательно от того источника, который будете брать за основу). Переменный резистор R6 выведите в крайнее положение, при котором напряжение выхода будет максимальным. Измерьте напряжение на выходе схемы. Переведите движок резистора R6 как Вам кажется точно в среднее положение. Подстроечным резистором R7 добейтесь на выходе схемы ровно половины того напряжения, которое измеряли при установке на максимум. Собственно – всё.
Данная коррекция не гарантирует абсолютную линейность регулировки, но визуально Вам покажется, что напряжение меняется идеально равномерно.
Применение
Плюс этой схемы заключается в ограничении максимального тока. Её можно использовать для сборки относительно бюджетного варианта источника питания. Для примера, я использовал в качестве преобразователя сетевого напряжения электронный трансформатор для галогенных ламп. У них есть серьёзный недостаток – отсутствие защиты от перегрузки. Но поскольку регулирующая схема ограничивает ток нагрузки, то практически защищает схему первичного преобразования от КЗ.
Файлы
Схема достаточно проста для повторения даже начинающими радиолюбителями, но, если кого интересует готовая печатка, качайте файл — Регулируемый БП 24 В 5 А
Кроме схемы и печатки в архиве содержится файл таблица с графиком, визуально отражающий изменение харауеристики равномерности регулирования при введении в схему корректирующего резистора, может кому то будет интересно, или даже полезно. Там в красных ячейках можно задавать величину сопротивлений переменного и корректирующего резистора. Изменение характеристики визуально можно наблюдать по представленным в файле графикам.
Предупреждение
Показанный в данной статье способ коррекции пригоден далеко не во всех случаях и может быть непреемлем для отдельного ряда задач!
ВНИМАНИЕ. Показанный способ коррекции следует использовать с особой осторожностью, зная принцип работы настраиваемого устройства и хорошо представляя, что Вы делаете! В других схемах при определённых положениях движка резисторов могут возникать недопустимые токи, способные вывести из строя резисторы или иные детали рабочего устройства. Используя описанный способ коррекции в своём устройстве вы действуете на свой страх и риск, а ещё лучше, представляете, что делаете. Ни какой ответственности за возможные причинённые неисправности Ваших устройств при применении корректирующего резистора по моей схеме лично я не несу.
Данный способ коррекции в конкретной представленной схеме на рисунке 2 абсолютно безопасен при любых номиналах корректирующего резистора и любых положениях движков корректирующего и переменного резисторов R7 и R6.
Универсальный блок питания
Незаменимым в кабинете физики есть универсальный блок питания, позволяющий получать регулируемое, стабилизированное питание, да еще иметь защиту от короткого замыкания! Им может стать описанный ниже блок питания, работающий от сети переменного тока и обеспечивающий любое постоянное напряжение от 0,5 до 12 В. В то время как
величина тока, потребляемого от блока, может достигать 0,3 А, выходное напряжение остается стабильным. И еще одно достоинство блока — он не боится коротких замыканий, часто встречающихся во время использованя учениками во время физического практикума.
Рис. 123. Схема блока питания
Схема блока питания приведена на рис. 123. Сетевое напряжение подается через вилку Х1, предохранитель F1 и выключатель S1 на первичную обмотку трансформатора T1. Это понижающий трансформатор, поэтому напряжение на его вторичной обмотке (II) значительно меньше сетевого. Переменное напряжение со вторичной обмотки поступает на выпрямитель, собранный на диодах V1 — V4. На выходе выпрямителя будет уже постоянное напряжение, оно сглаживается конденсатором С1 сравнительно большой емкости — 500 мкФ. Далее следует стабилизатор напряжения, в который входят резисторы R2 — R5, транзисторы V8, V9 и стабилитрон V7. Переменным резистором R3 можно устанавливать на выходе блока (в гнездах Х2 и ХЗ) любое напряжение от 0,5 до 12 В. Каскад на транзисторе V6 постоянно «следит» за состоянием нагрузки — это автомат защиты от короткого замыкания. Если в цепи нагрузки произойдет короткое замыкание, то есть окажутся замкнутыми выходные гнезда блока питания, транзистор V6 откроется, замкнет выводы стабилитрона и снимет таким образом напряжение с нагрузки. Как только короткое замыкание будет устранено, выходное напряжение появится вновь. Понижающий трансформатор блока готовый. Его роль выполняет выходной трансформатор кадровой развертки телевизора (ТВК — 110ЛМ).
Подойдет и другой понижающий трансформатор с переменным напряжением на обмотке II около 14 В (можно 13 — 17 В) при токе потребления до 0,3 А. Иначе говоря, указанное напряжение должно быть при подключенной к выводам обмотки нагрузке (например, резистор) сопротивлением около 45 Ом и мощностью 5 Вт. Диоды могут быть любые из серии Д226 (например, Д226В, Д226Д и т.д.). Конденсатор С1 типа К50-6. Постоянные резисторы — МЛТ, переменный — СП-I. Вместо стабилитрона Д814Д можно применить Д813. Транзисторы V6, V8 надо взять типа МП39Б, МП41, МП41А, МП42Б с возможно большим коэффициентом передачи тока. Транзистор V9 — П213, П216, П217 с любым буквенным индексом. Подойдут и П201 — П203.
Транзистор нужно установить на радиатор — пластину алюминия или другого металла размером 70 X X 40 мм, толщиной 1,5 — 2 мм. Делают это так, как рассказывалось в описании блока питания электрофона. Остальные детали— выключатель, предохранитель, вилка и гнезда— любой конструкции. Для монтажа деталей вырежьте из изоляционного материала (гетинакс, текстолит, фанера) плату, чертеж которой приведен на рис. 124. Сначала прорежьте в плате пазы под лапки крепления трансформатора. Затем установите монтажные шпильки и просверлите отверстия в углах платы и под выводы электролитического конденсатора.
Смонтируйте диоды и стабилитрон, припаяйте постоянные резисторы, а в последнюю очередь — транзисторы. Установите на плате держатель предохранителя — его можно изготовить из жести от консервной банки (см. рис. 81). Поместитевыходной транзистор на радиатор, прикрепите радиатор к плате и подпаяйте выводы транзистора к соответствующим шпилькам платы. Прикрепите к плате трансформатор и подпаяйте выводы его вторичной обмотки к диодам, а один из выводов первичной обмотки— к держателю предохранителя. Вставьте в отверстия выводы электролитического конденсатора, загните их снизу в разные стороны, чтобы конденсатор держался на плате, и подпаяйте к выводам проводники от диодов.
Рис. 124. Монтажная плата блока питания: а — расположение деталей; б — внешний вид
Плату с деталями закрепите в корпусе подходящих размеров. На лицевой стенке корпуса установите выключатель (например, тумблер ТВ2-1), переменный резистор, выходные гнезда (здесь лучше всего подойдут зажимы, позволяющие вставлять однополюсные вилки или подключать проводники от питаемых конструкций). Задняя стенка корпуса съемная, в ней надо проделать отверстие под сетевой шнур питания. Перед тем как закрепить в корпусе плату, соедините соответствующие шпильки ее с деталями на передней стенке. Это соединение сделайте проводниками в изоляции достаточной длины, чтобы их хватило, когда плата лежит рядом скорпусом.
Как обычно, после окончания монтажа сначала проверьте правильность всех соединений, а затем вооружитесь вольтметром и приступайте к проверке блока питания. Вставив вилку блока в сетевую розетку и подав питание выключателем S1, сразу же проверьте напряжение на конденсаторе С1 — оно должно быть 15 — 19 В. Затем установите движок переменного резистора R3 в верхнее по схеме положение и измерьте напряжение на гнездах XI и ХЗ — оно должно быть около 12 В. Если напряжение намного меньше, проверьте работу стабилитрона — подключите вольтметр к его выводам и измерьте напряжение. В этих точках напряжение должно быть около 12 В. Его значение может быть значительно меньше из-за использования стабилитрона с другим буквенным индексом (например, Д814А), а также при неправильном включении выводов транзистора V6 или его неисправности. Чтобы исключить влияние этого транзистора, отпаяйте вывод его коллектора от анода стабилитрона и вновь измерьте напряжение на стабилитроне. Если и в этом случае напряжение мало, проверьте резистор R2 на соответствие его номинала заданному (360 Ом). Когда добьетесь на выходе блока питания нужного напряжения (примерно 12 В), попробуйте перемещать движок резистора вниз по схеме. Выходное напряжение блока должно плавно уменьшаться почти до нуля. Теперь проверьте работу блока под нагрузкой. Подключите к гнездам-зажимам резистор
сопротивлением 40 — 50 Ом и мощностью не менее 5 Вт. Его можно составить, например, из четырех параллельно соединенных резисторов МЛТ-2,0 (мощностью 2 Вт) сопротивлением по 160— 200 Ом. Параллельно резистору включите вольтметр и установите движок переменного резистора R3 в верхнее по схеме положение. Стрелка вольтметра должна показать напряжение не ниже 11 В. Если напряжение падает сильнее, попробуйте уменьшить сопротивление резистора R2 (установите вместо него резистор сопротивлением 330 или 300 Ом). Наступило время проверить действие автомата защиты. Понадобится амперметр на 1 — 2 А, но вполне можно воспользоваться авометром Ц20, включенным на измерение постоянного тока до 750 мА. Сначала установите переменным резистором блока питания выходное напряжение 5 — 6 В, а
затем подключите щупы амперметра к выходным гнездам блока: минусовый щуп к гнезду Х2, плюсовый — к гнезду ХЗ. В первый момент стрелка амперметра должна отклониться скачком на конечное деление шкалы, а затем возвратиться на нулевую отметку. Если это так, автомат работает исправно.
Максимальное выходное напряжение блока определяется только напряжением стабилизации стабилитрона. А оно для указанного на схеме Д814Д (Д813) может быть от 11,5 до 14 В. Поэтому при необходимости несколько поднять максимальное напряжение подберите стабилитрон с нужным напряжением стабилизации или замените его другим, например Д815Е (с напряжением стабилизации 15 В). Но в этом случае придется изменить резистор R2 (уменьшить его сопротивление) и использовать трансформатор, с которым выпрямленное напряжение будет не менее 17 В при нагрузке 0,3 А (измеряется на выводах конденсатора). Заключительный этап— градуировка шкалы переменного резистора, которую вы заранее должны наклеить на лицевую панель корпуса. Понадобится, конечно, вольтметр постоянного тока. Контролируя выходное напряжение блока, устанавливайте движок переменного резистора в разные положения и отмечайте на шкале значение напряжения для каждого из них. Градуировать шкалу можно через 1 В или проставить на ней наиболее употребительные напряжения: 1,5; 3; 4,5; 6; 9; 12 В. В любом случае надо помнить, что значения напряжений будут правильны без нагрузки.
Блок питания с регулировкой напряжения и тока
Друзья, сегодня хочу рассказать вам о своей новой самоделке, это блок питания с регулировкой напряжения и тока о котором мечтают все без исключения начинающие и опытные радиолюбители. Устройство можно использовать, как в качестве лабораторного блока для питания различных самоделок, так и в качестве зарядного устройства для зарядки автомобильных аккумуляторов. Блок питания имеет стабилизированный регулятор напряжения и систему ограничения силы тока, защиту от переполюсовки клейм аккумулятора со световой индикацией, а также автоматический регулятор скорости вентилятора, изменяющий обороты в зависимости от нагрева радиатора. На этом рисунке изображена схема блока питания с регулировкой напряжения и тока рассчитанная на ток до 10А. К этой схеме можно подключать любой трансформатор или импульсный источник питания от 12 до 30В. Для тех кто любит по мощнее, в этой статье вы также найдете схему рассчитанную на ток до 25А. Не буду торопить события. Внимательно читайте статью до конца.
Схема блока питания с регулировкой напряжения и тока 1.2…30В 10А
Регулируемый стабилизатор напряжения LM317 позволяет плавно регулировать напряжение в диапазоне от 1.2 до 30В. Регулировка напряжения выполняется переменным резистором Р1. Транзистор Т1 MJE13009 выполняет роль ключа пропускающего через себя большой ток.
Система ограничения силы тока выполнена на полевом транзисторе Т2 IRFP260, позволяет ограничивать ток от 0 до 10А, управление током осуществляется переменным резистором Р2, что позволяет использовать данный блок питания в качестве зарядного устройства для зарядки автомобильных аккумуляторов. Мощный резистор R6 с сопротивлением 0.1 Ом 20 Вт выполняет роль шунта. Купить его не проблема в Китае на Али Экспресс. Если не хочется долго ждать можно соединить несколько резисторов параллельно тогда получится один мощный резистор. Обратите внимание на то, что при параллельном соединении резисторов применяется специальная формула.
Общее сопротивление резисторов делится на количество резисторов. Как определить общее сопротивление, одинаковых резисторов? Надо просто взять сопротивление одного резистора и разделить на количество резисторов. Например, у меня есть 4 резистора, сопротивление каждого резистора 1 Ом и рассеиваемая мощность 10 Вт, следовательно общее сопротивление всех резисторов 1 Ом, если их соединить параллельно, то получится общее сопротивление четырех резисторов 0.25 Ом 40 Вт. Мощность всех резисторов суммируется. Таким образом можно сделать резистор любой мощности. На фотографиях и в видеоролике в моем блоке питания вы увидите сборку из 4 резисторов по 1 Ом 10 Вт с общим сопротивлением 0.25 Ом и мощностью 40 Вт. Сделал я так потому, что в тот момент у меня не было под рукой, да и в магазине тоже мощного резистора на 0.1 Ом 20 Вт. Но вот чудо, оказалось, что регулировка тока в данной схеме отлично работает даже с сопротивлением в 0.25 Ом. Мне стало интересно и я решил провести серию экспериментов с резисторами пришедшими через пару недель из Китая, с сопротивлением в 0.1 Ом, 0.25 Ом, 0.5 Ом, и пришел к выводу, что с любым из этих сопротивлений регулировка тока работает отлично. То есть, в данную схему можно поставить резисторы с любым сопротивлением в диапазоне от 0.1 Ом до 0.5 Ом, что делает эту схему доступной для сборки начинающим радиолюбителям. Ведь не всегда можно найти в магазине резисторы с нужным сопротивлением и мощностью. Ещё я пробовал заменить резистор куском нихромовой спирали от электроплитки, все тоже самое на работу регулировки тока это никак не повлияло, единственный минус в том, что спираль сильно нагревалась и её пришлось залить в бетон.
В схеме имеется встроенная защита от переполюсовки. При правильном подключении блока питания к аккумулятору загорается зеленый светодиод Led1. В случае не правильного подключения загорается красный светодиод Led2, сигнализирующий о ошибке подключения. Система корректно работает только при выключенном питании блока питания. То есть сначала подключаем аккумулятор, когда загорится зеленый светодиод включаем блок питания в сеть.
Автоматический регулятор оборотов вентилятора предназначен для уменьшения уровня шума возникающего в процессе работы блока питания. Стабилизатор напряжения L7812CV поддерживает постоянное напряжение 12В поступающее на делитель состоящий из терморезистора R8 установленного на радиаторе и подстроечного резистора Р3. Напряжение с делителя поступает на базу транзистора Т3. В процессе работы блока питания от большой нагрузки радиатор нагревается, сопротивление терморезистора R8 установленного в радиаторе становится меньше сопротивления подстроечного резистора Р3, напряжение на базе транзистора увеличивается и транзистор приоткрывается, тем самым увеличивая скорость вращения вентилятора. Настройка чувствительности регулятора осуществляется подстроечным резистором Р3.
В данной схеме регулируемого блока питания имеется возможность подключения разных моделей вольтметров и амперметров, стрелочных и электронных. С аналоговой классикой обозначенной на схеме буквами V вольтметр и A амперметр все понятно подключаем согласно схеме. Амперметр лучше покупать со встроенным шунтом, так гораздо компактней и дешевле. Класс точности вольтметра и амперметра с Али Экспресс должен быть 2.5 эти приборы работают нормально. А вот с китайскими электронными придется повозиться. На данный момент существует две модели китайских универсальных измерительных приборов (КУИП). Первая модель с синим проводом со встроенным шунтом более точная менее глючная, в последнее время её трудно найти на Али Экспресс. Вторая модель с желтым проводом и встроенным шунтом не точная и очень глючная с прыгающими показаниями амперметра от 0 до 0.25А на холостом ходу без нагрузки. Не понятно зачем её вообще продают? Если вы будете ставить электронный КУИП, тогда надо разорвать участок электрической цепи отмеченный на схеме красным крестиком. По другому в данной схеме электронный КУИП работать правильно не будет .
А эта схема для тех, кто любит мощные блоки питания. Как и обещал до 25А.
Схема блока питания с регулировкой напряжения и тока 1.2…30В 25А
В схему добавлен дополнительный мощный транзистор Т2 TIP35C способный выдерживать ток до 25А и резистор R3 200 Ом. Диодный мост заменен на более мощный. Транзистор IRFP250 выдерживает 30А, а транзистор IRFP260 49А.
На этом рисунке изображена печатная плата блока питания с регулировкой напряжения и тока на 10А.
Печатная плата блока питания с регулировкой напряжения и тока 1.2…30В 10А
На этом рисунке изображена печатная плата блока питания с регулировкой напряжения и тока на 25А.
Печатная плата блока питания с регулировкой напряжения и тока 1.2…30В 25А
Стабилизатор напряжения LM317, транзисторы TIP35C, IRFP250, 260 устанавливаем на радиатор через изолирующие термопрокладки и термошайбы. Транзистор MJE13009 устанавливаем на радиатор без изоляции, иначе от сильного нагрева и плохого отвода тепла через термопрокладку будет перегреваться и выходить из строя. Стабилизатор напряжения L7812CV и транзистор BD139 устанавливаем на разные радиаторы. Терморезистор вставляем в просверленное в радиаторе отверстие и закрепляем с помощью Поксипола или Эпоксидной смолы. В процессе установки терморезистора проверяйте мультиметром отсутствие электрического контакта, между терморезистором и радиатором. Переменные резисторы, а также светодиоды при необходимости можно соединить проводами и вынести за пределы платы.
Готовый блок питания начинает работать сразу после подачи питания на плату. Единственное что надо настроить, так это скорость вращения вентилятора. Для этого надо при холодном радиаторе с помощью подстроечного резистора Р3 выставить напряжение на вентиляторе примерно 1 вольт. Вентилятор начнет вращаться при температуре радиатора примерно 45 градусов, обороты будут подниматься прямо пропорционально температуре радиатора. При охлаждении радиатора обороты вентилятора будут снижаться. Так работает автоматический регулятор оборотов вентилятора.
Как же пользоваться блоком питания?
Очень просто. Включаем питание и выставляем регулируемым резистором Р1 нужное вам напряжение. Ручку регулируемого резистора Р2 ставим в крайнее правое положение соответствующее максимальной силе тока. Подключаем нагрузку к блоку питания, при необходимости добавляем напряжение. Если надо резистором Р2 можно ограничить ток.
Как заряжать аккумулятор?
Легко! При подключении аккумулятора блок питания должен быть выключен из сети. Ставим ручки резисторов Р1 и Р2 в крайнее левое положение, минимальное напряжение и минимальный ток. Подключаем аккумулятор к блоку питания. Должен загореться зеленый светодиод, это означает что аккумулятор подключен правильно. В случае ошибки подключения загорится красный светодиод. После того, как вы убедились в правильности подключения аккумулятора, включите блок питания в сеть. Переменным резистором Р1 установите напряжение 14.5В. Далее резистором Р2 установите силу тока равную 10% от емкости аккумулятора, то есть для 60А/ч батареи начальный ток должен быть не более 6А.
После установки силы тока произойдет падение напряжения примерно до 13В. По мере заряда аккумулятора напряжение будет постепенно подниматься до 14.5В, а сила тока будет снижаться до 0.1А это будет означать, что батарея полностью заряжена.
Что будет с блоком питания в случае короткого замыкания?
Ничего страшного не произойдет. В случае короткого замыкания сработает защита ограничения тока. Согласно закону Ома: чем больше сопротивление цепи, тем меньше сила тока будет в нем. Следовательно при коротком замыкании будет максимально возможный ток. Напряжение упадет, а сила тока будет той, которую вы ограничили резистором Р2.
Радиодетали для сборки блока питания с регулировкой напряжения и тока на 10А
- Диодный мост KBPC2510, KBPC3510, KBPC5010
- Конденсатор С1 4700mf 50V
- Регулируемый стабилизатор напряжения LM317
- Транзисторы Т1 MJE13009, T2 IRFP250, IRFP260, T3 КТ815, BD139
- Переменные резисторы Р1 5К, Р2 1К, Р3 10К
- Стабилитрон 12V 5W 1N5349BRLG
- Резисторы R1, R2 200R 0.25W, R3 1K 5W, R4 100R 0.25W, R5 47R 0.25W, R6 0.1R 20W, R7 3K 0.25W
- Терморезистор R8 B57164-K 103-J сопротивление 10К
- Светодиоды 5мм красный и зеленый, напряжение питания 3В
- Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 2шт
- Вентилятор 70х70 мм
Радиодетали для сборки блока питания с регулировкой напряжения и тока на 25А
- Диодный мост KBPC2510, KBPC3510, KBPC5010
- Конденсатор С1 4700mf 50V
- Регулируемый стабилизатор напряжения LM317
- Транзисторы Т1 MJE13009, T2 TIP35C, T3 IRFP250, IRFP260, T4 КТ815, BD139
- Переменные резисторы Р1 5К, Р2 1К, Р3 10К
- Стабилитрон 12V 5W 1N5349BRLG
- Резисторы R1, R2, R3 200R 0.25W, R4 1K 5W, R5 100R 0.25W, R6 47R 0.25W, R7 0.1R 20W, R8 3K 0.25W
- Терморезистор R9 B57164-K 103-J сопротивление 10К
- Светодиоды 5мм красный и зеленый, напряжение питания 3В
- Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 2шт
- Вентилятор 70х70 мм
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как сделать блок питания с регулировкой напряжения и тока
БП с плавной регулировкой напряжения
Как известно, каждому радиолюбителю приходится сталкиваться с самыми различными напряжениями питания: 1.5, 3, 6, 12В. Но при этом покупать кучу батареек не всегда удобно и выгодно, да и срок службы их ограничен. Поэтому я предлагаю вам схему БП дающего постоянное напряжение от 1 до 12 В. А величина тока, потребляемого различными устройствами от этого БП может достигать 0,2-0,3 А. Главным преимуществом этого блока является то, что он не боится КЗ (коротких замыканий), что немаловажно для радиолюбителей, начинающих свою практику.
Сетевое напряжение подается на вилку «
В первичной обмотке трансформатора находится предохранитель F1 и выключатель питания S1.
Мост, собранный на диодах D1-D4 выпрямляет переменное напряжение, поступающее со вторичной обмотки трансформатора.
Конденсатор С1, емкостью 2200мкФ, сглаживает пульсации, поступающие с выпрямителя.
Следующим блоком нашего устройства является параметрический стабилизатор, собранный на резисторах R2 — R5, Р1, транзисторах Т2, Т3 и стабилитроне D6. Напряжение на выходе БП устанавливается переменным резистором Р1.
В качестве трансформатора Тr1 можно применить трансформатор из старого телевизора, например
ТВК-110ЛМ-К или любой другой с напряжением 13 — 17 В(на вторичной обмотке), при токе потребления до 0,3А. Диоды могут быть любые из серии 1N540 (например, 1N5401, 1N5403, 1N5407 и т.д.). Вместо стабилитрона Д814Д лучше применить какой- нибудь импортный аналог…
Транзистор Т3 следует установить на радиатор — пластину алюминия или другого металла размером 70 X 40 мм и толщиной 1,5 — 2 мм, ну я думаю с этим проблем не будет, радиатор можно достать практически из любой технике. Детали я советую монтировать на куске текстолита, гетинакса (можно даже на фанере). Если вы умеете разводить печатные платы, монтируйте на печатке.
Плату закрепите в подходящем корпусе, на верхнюю стенку корпуса выведите тумблер, переменный резистор, гнезда-зажимы выведите на лицевую стенку.
Когда вы наконец-то закончите сборку этого устройства, возьмите мультиметр, включите БП в сеть и проверьте напряжение на стабилитроне D6, оно должно 15 — 19 В
Теперь проверьте работу блока под нагрузкой. Подключите к гнездам-зажимам лампочку на 13 В и крутите переменный резистор. В крайнем положении резистора лампочка должна тускло светиться, в другом вообще не гореть!
Последнее что вам надо сделать, так это отградуировать шкалу. Вооружитесь мультиметром, подключите его к БП, устанавливайте движок переменного резистора в разные положения и отмечайте на шкале значение напряжения для каждого из них. Градуировать шкалу можно через 0.5В или проставить наиболее употребительные напряжения.
Дополнительно, я еще сделал себе светодиодную индикацию включенного питания, вот принципиальная схема:
Думаю понятно, что я просто добавил к схеме БП резистор, мост и светодиод.
Резистор расчитывается так: R=(напряжение на вторичке транса-3В)/0.02А
Блок питания с регулировкой напряжения (Очень любительский)
Испытываете ли вы нужду в регулируемом источнике питания? Уверены?
Данный прибор будет непременно полезен тем, кто что то делает своими руками в области электроники. Можно произвести тестовую запитку устройства перед намоткой соответствующего трансформатора, узнать поведение устройства при разряде батарей.
Интересно? Читаем дальше.
Для создания такого устройства я взял компьютерный блок питания AT. Главным критерием выбора является наличие микросхемы широтно-импульсной модуляции tl494. Будьте внимательны! Возможно у вас аналог tl949, тогда всё в порядке. Если у вас блок собран вокруг другой микросхемы, например lm324, данная статья вам не поможет.
Разборка корпуса блока питания происходит путём отвинчивания двух шурупов с верхней части корпуса. Снимаем крышку. Ищем tl949. Нашли? Идём дальше.
Переделка моим способом (способом, который я использовал сам и предлагаю вам) минимальна. Первая нога микросхемы соединена с землёй и выходами питания. Иногда только с +12, иногда только с +5. У меня с обоими. Соединена она не на прямую, а через резистор.
Что сделал я. На половину уменьшил номинал резистора, идущего на землю от первой ноги микросхемы. Выпаял резисторы между первой ногой и +5 и +12. Между первой ногой микросхемы и шиной +12 поставил подстрочный (переменный резистор) на 100 КОм. Можно поставить на 47КОм Между шиной +5 и первой ногой микросхемы. Ск ажу заранее, чтобы лишний раз не перепаивать, при увеличении сопротивления переменного резистора возрастает напряжение. Для меня удобнее сделать так, чтобы напряжение увеличивалось при повороте ручки по часовой стрелке, чем против.
Должно получиться так:
Давайте проверим работоспособность! Если ваш БП стандарта АТХ, то замыкаем зелёный провод на землю(чёрный провод) и БП запущен. Если у вас БП стандарта АТ, то нужно создать нагрузку. Можно повесить вентилятор, имеющийся в блоке питания, можно подключить лампочку автомобильную, мощный резистор. Ориентироваться нужно на то, чтобы создать ток 0.5а по шине +5. Несложными рассчётами можно определить, что нам потребуется сопротивление 10 (Ом) а мощность резистора будет 2.5 ватта. Для подстраховки давайте возьмём 3 ватта. если у вас нет мощных резисторов, то можно спаять несколько штук маломощных в параллель, их мощность (при равных сопротивлениях) будет равна сумме мощностей всех резисторов. Я же, взял керамический предохранитель из «пробок» старого типа, разорвал проволоку на нём, намотал на него спиралью проволоку из вольфрама. Уместить достаточную длину на одном предохранителе мне не удалось, я использовал 3, затем соединил их последовательно. Подключаем нашу нагрузку между землёй (чёрный провод) и +5 в (красный провод), вольтметр выставляем на 20в и подсоединяем параллельно нагрузке. Устанавливаем наименьшее сопротивление переменного резистора, накрываем крышкой блок питания. Отключаем все чувствительные электроприборы от эл.сети в рамках безопасности. Включаем в сеть наш блок питания, находясь как можно дальше от самого блока питания. Помните, . ВЫ РАБОТАЕТЕ С ВЫСОКИМ НАПРЯЖЕНИЕМ.
Смотрим на напряжение. У меня минимум получился 2.6 вольта. Крайне осторожно поднимаем напряжение поворотом ручки переменного резистора. Следим, чтобы не превысить 8 вольт по шине +5. При превышении этого порога на шине +12 будет больше 16 вольт. Прекрасно? Пока это не так. Фильтрующие конденсаторы на шине +12 рассчитаны на 16в. При превышении будет взрыв. Я, как человек, которому наплевать на жизнь, превысил напряжение. Был взрыв конденсатора: гора дыма, искры, громкий хлопок, капли жидкости из конденсатора. Не повторяйте этого!
Но как же нам повысить напряжение до максимально без взрывов? Для этого можно использовать два конденсатора на 16в соединённых последовательно + к -. Их ёмкость при этом будет высчитываться так же, как и сопротивление параллельно соединённых резисторов. Лучше всего пойти на радиорынок, заглянуть в радиолавку и купить конденсатор рассчитанный на 30в. Ёмкость его должна быть выше 1000 мкФ. У меня сейчас стоит на 3300мкФ 35в. Обратите внимание, что регулироваться напряжение будет на всех имеющихся шинах. +5, +12, +3.3 (на ат таковой нет), -5, -12. Просматриваем все конденсаторы по этим шинам. На шине 5в ставим по 16в и ёмкость от 500мкФ (чем выше, тем стабильнее) а на 12 ставим 30в. Как только мы заменили конденсаторы мы просто обязаны проверить максимальное напряжение, которое мы можем выжать. Проверяем. Сколько у вас? У меня +25 по шине 12в и 12 по шине 5в. На отрицательных плечах напряжение такое же, только с отрицательным знаком. Выпаиваем все провода с выходом питания. Ленивым и расточительным разрешается оставить по 2 провода на каждую жилу, остальное выпаять и обрезать от штекеров. Покупаем в магазине электрики клеменную колодку и вжимаем в неё провода с одной стороны. Затем выводим её наружу через вентиляционные дырки, крепим. Располагаем напряжения по логике. Моя логика. это -12, -5, 0, +5, +12 слева направо. В дырку, через которую раньше выходили провода, устанавливаем переменный резистор. Ну просто красота!
Откуда же у меня 7 клейм?! Я взял две земли и два выхода +5. К ним удобно подключать мультиметр на долгое время.
Подключаем вентилятор между контактами +5 и +12. Этим мы добъёмся регуляции оборотов в зависимости от напряжения блока питания. Максимальное напряжения 25-12.5=12.5. Всё прекрасно. Если у вас ATX блок питания и имеется выход +3.3 вольта, то рекомендую вентилятор подключить между +3.3 и +12. Вентиляторы данного типа спокойно держат 16в. разворачиваем вентилятор так, чтобы он дул вовнутрь корпуса, а не наружу. Изолируем землю от корпуса блока питания. Это я рекомендую сделать потому, что если вы коснётесь случайно проводом под напряжением корпуса ничего не случится, в отличии о искр при заземлении корпуса. Наш блок питания не имеет регулировки по току, однако почитав умных статей в интернете вы, думаю, сможете сделать себе таковой. Наш БП имеет защиту от КЗ. Замкните любые провода с разными потенциалами и бп просто отключится. Нужно именно замкнуть а не коротнуть с искрой.
Прокладка из бумаги.
Кабель питания можно использовать стандартный, но мне это показалось слишком расточительным, потому что внутри бп провода питания идут уже тонкие. Я использовал шнур от старого магнитофона.
Ранее, я указал, что максимальное напряжение это 25в. Но ведь между -25 и 25 напряжение будет 50в! Так и есть, однако допустимый ток по отрицательным каналам очень мал, порядка 500 мА. Если у вас есть приборы, работающие от такого напряжения и потребляющие так мало тока, то конечно, используйте эту возможность. Регулировку напряжение я советую производить плавно, не рывками.
После всего можно сделать «лицо нашему прибору». Тут уже проявляйте своё творчество как хотите. Рекомендую печатать на глянцевой бумаге формата А6 и клеить на супер клей. Мой вариант не оконченный, т.к принтер уже пол года не печатает цветом, а идти к другу попа не хочет)