Регулировка клапанов, ремонт выхлопа
Регулировка клапанов, ремонт выхлопа
После зимней спячки пришлось долго крутить стартером, чтобы завести. Решил отрегулировать клапана так как был слышен явный звук. Заодно задумал поменять гофру глушителя. Для решения данных проблем отправился в сервис, сам никогда в двигатели не лазил, да и сам я специалист более по электронике чем, механике. Установить сигнализацию с автозапуском это запросто (что и было сделано на короллке самостоятельно, если кому интересно могу описать в бортжурнале).
Нашел информацию по методу регулировки клапанов, подходит для любого двигателя. Размещу здесь для себя и для тех кому это будет полезно.
——————————————————————————————————————————————-
В мануалах по обслуживанию моторов приводится методика регулировки зазоров в клапанах с последовательным вращением коленчатого вала на некоторый угол с хитрым порядком регулировки (регулируем зазор у выпускного клапана первого цилиндра, затем у впускного третьего, затем…и т.д.). Для людей впервые взявшихся за регулировку клапанов эта методика не всегда понятна. Не надо забивать себе голову всякими углами. Это лучший способ запутать себя и сделать работу не правильно. Существует другая, очень простая методика. Соблюдая её, приходится чуть-чуть больше поработать руками, зато практически невозможно допустить ошибку.
В основе методики лежит принцип конструкции кулачка, управляющего клапанами. Кулачок состоит из двух окружностей (окружности затылка и окружности вершины), стянутых парой общих касательных. Так устроен любой кулачок. При этом в любом месте окружности затылка зазор между телом кулачка и клапаном (коромыслом) одинаков и постоянен.
1 — Снимаете клапанную крышку, перед Вами открывается клапанный механизм. Не имеет совершенно никакого значения, каков принцип действия механизма привода клапанов. Состоит механизм из коромысел и штанг или привод клапанов непосредственный от распредвала, принцип регулировки единый.
2 — Проворачиваете коленчатый вал до тех пор, пока на первом цилиндре оба клапана не сработают последовательно один за другим. Первым срабатывает (открывается, а затем закрывается) выпускной клапан, а сразу за ним без перерыва, то же самое совершает впускной.
3 — После того как сработает (откроется и закроется) впускной клапан поворачиваем коленчатый вал еще на некоторый угол (45-90 градусов) и в этом положении регулируем зазоры у обоих клапанов первого цилиндра. Будет это угол 45 или 90 градусов или любой другой в этом интервале, совершенно безразлично. В этом интервале оба клапана гарантированно закрыты и мы имеем право регулировать зазор.
4 — Далее проворачиваем коленчатый вал до срабатывания, таким же образом, клапанов второго цилиндра, регулируем клапаны этого цилиндра и далее повторяем процедуру последовательно для каждого очередного цилиндра.
Расписанная в мануалах методика регулировки зазоров позволяет отрегулировать зазоры в клапанном механизме всего за два оборота коленчатого вала. Она идеальна для сборочного конвейера, где надо отрегулировать двигатель за три минуты. Однако, для человека занимающегося регулировкой от случая к случаю, пользы от фабричной методики мало. Во время регулировки зазоров, по предлагаемой в данной статье схеме, нам придется повернуть коленчатый вал на несколько оборотов больше, но при этом наглядность процесса намного выше, а вероятность ошибки сводится к минимуму.
———————————————————————————————————————
Для моего двигателя 3A-LU
Порядок работы цилиндров 1-3-4-2
клапана регулируются отверткой и ключом на 10
клапана регулируются как на жигулях классике. всё очень быстро и просто. нужен набор щупов и 2 ключа.
зазоры:
впускной -0.2
выпускной -0.3
Клапана отрегулировали, заодно заменили втулки клапанной крышки 90210-09019 старые уже были деревянные.
С выхлопной вышло все не так удачно. После снятия выяснилось, что заменой гофры не обойтись. Весь тракт от штанов до банки в дырах и трещинах. Погрузил снятое решето в багажник и с ревом поехал домой, одна радость, клапана теперь не стучат. Озадачился что же делать с выхлопом. Поиск на рынке труб с похожими изгибами резкой и проваркой не вдохновлял. Решил заказать на известном сайте компоненты: прямую трубу и изгибы — по расчетам вышло 1500 рублей примерно без доставки. Но сколько еще нужно отдать за проварку всего тракта, даже думать не хотел, поскольку за регулировку клапанов и снятие трубы отдал в сервисе 3000 руб. Но покопавшись на сайте нашел "глушитель автомобильный POLMOSTROW" для AE82 наших годов.
Стоимость готового изделия с гофрой и резонатором, тракт до банки 3 687.50 руб.
Единственный вариант который похож на мой. Придется только переварить входной фланец до гофры.
Регулировка клапанов 4ZZ-FE Тойота Королла
Для компенсации теплового расширения клапана конструктивно задается зазор между торцом толкателя клапана и кулачком распределительного вала. При увеличенном зазоре клапан не будет полностью открываться, а при уменьшенном — полностью закрываться.
Зазор измеряют щупом на холодном двигателе (при температуре +20 °С) между кулачком распределительного вала (кулачок должен быть направлен вверх от толкателя) и толкателем клапана. Зазоры регулируют подбором толкателей.
Вам потребуются: набор плоских щупов, накидной ключ «на 19» (или торцовая головка) для проворачивания коленчатого вала.
1. Снимите брызговики двигателя, чтобы обеспечить доступ к болту крепления шкива коленчатого вала.
2. Снимите коышку головки блока цилиндров
3. Проворачивая коленчатый вал за шкив, измерьте набором щупов зазоры в приводе тех клапанов, кулачки которых направлены вверх от толкателей. Необходимо заменить толкатели тех клапанов, зазоры в которых отличаются от номинального значения. Запишите измеренные зазоры.
Выпускают толкатели 35 размеров с шагом 0,02 мм, высотой от 5,06 до 5,74 мм. Номинальный зазор (на холодном двигателе): в приводе впускных клапанов 0,15-0,25 мм; в приводе выпускных клапанов 0,25-0,35 мм.
4. Если зазор в приводе клапанов отличатся от номинального, снимите распределительные валы
5. Запишите толщину толкателя, которая нанесена на него с внутренней стороны. Если надпись не видна, измерьте толщину толкателя микрометром.
6 Рассчитайте толщину Н нового толкателя по формуле (все значения в мм)
где В — толщина старого толкателя;
А — измеренный зазор;
С — номинальный зазор.
Например (для впускного клапана):
В = 5,06 мм; А = 0,26 мм; С = 0,2 мм.
Тогда Н = 5,06 + 0,26 — 0,2 = 5,12 (мм). В пределах допуска зазора (±0,02 мм) подбираем ближайший по толщине толкатель -5,12 мм.
7. Установите новый толкатель, толщина которого рассчитана по формуле.
8. Установите распределительные валы
9. Проверьте щупом зазор. Если он отличается от номинального, повторите регулировку.
10. Установите крышку головки блока цилиндров и все снятые детали в порядке, обратном снятию. При необходимости замените сильно обжатую прокладку крышки
ПРОВЕРКА, ПРОМЫВКА И ЗАМЕНА ГИДРОКОМПЕНСАТОРОВ ЗАЗОРОВ ПРИВОДА КЛАПАНОВ ДВИГАТЕЛЕЙ 1NR-FE И 1ZR-FE
Гидрокомпенсаторы зазоров в механизме привода клапанов служат для устранения зазоров в приводе. Работа гидрокомпенсатора основана на принципе несжимаемости моторного масла, постоянно заполняющего при работе двигателя внутреннюю полость гидрокомпенсатора и перемещающего его плунжер при появлении зазора в приводе клапана, обеспечивая постоянный контакт ролика нажимного рычага привода клапана с кулачком распределительного вала без зазора. Благодаря этому отпадает необходимость регулировки клапанов при техническом обслуживании.
Гидрокомпенсаторы представляют собой неразборные компактные устройства, вставленные в гнезда головки блока цилиндров.
Стук клапанов работающего двигателя может быть вызван:
— попаданием воздуха в надплунжерные полости гидрокомпенсаторов при слишком низком или слишком высоком уровне масла в картере, а также при длительной стоянке автомобиля на уклоне;
— загрязнением прецизионных поверхностей гидрокомпенсаторов зазоров в механизме призода клапанов шламом из моторного масла низкого качества (или при его несвоевременной замене, а также при повреждении масляного фильтра);
Если прокачкой или промывкой не удается восстановить работоспособность гидрокомпенсаторов, замените их, так как их конструкция неразборная.
Первоначально убедитесь в том, что посторонний шум при работе двигателя вызван неисправностью именно гидрокомпенсаторов:
— пустите двигателя. При неисправности гидрокомпенсаторов посторонний шум в зоне крышки головки блока появляется сразу после пуска двигателя и изменяется в соответствии с изменением частоты вращения коленчатого вала двигателя. Если шум не появляется сразу после пуска двигателя или не изменяется при изменении частоты вращения коленчатого вала, неисправность вызвана не нарушением работы гидрокомпенсаторов. Более того, если шум не меняется при изменении частоты вращения коленчатого вала, вероятно, причина постороннего шума не в двигателе;
— при работе двигателя на холостом ходу убедитесь, что уровень шума не меняется при изменении нагрузки (например, при выключении сцепления или при включении элекропо-требителей и кондиционера). Если уровень шума меняется, причиной может быть соударение деталей вследствие износа вкладышей шатунных и коренных подшипников коленчатого вала, а не неисправность гидрокомпенсаторов;
— прогрейте двигатель до рабочей температуры. Если шум уменьшился или исчез, возможно, стук гидрокомпенсаторов вызван загрязнением маслом. В этом случае необходимо промыть гидрокомпенсаторы;
— если шум не исчез, возможно, в гидрокомпенсаторы попал воздух, и его следует удалить.
При слишком низком уровне масла в картере масляный насос захватывает вместе с маслом воздух; при слишком высоком масло взбалтывается и зспенивается противовесами коленчатого вала. При длительной стоянке автомобиля на уклоне масло вытекает из полостей гидрокомпенсаторов и масляных каналов, а подвод масла к гидрокомпенсаторам после пуска двигателя требует некоторого времени, за которое полость гидрокомпенсатора успевает попасть воздух. Во всех этих случаях при попадании масла вместе с воздухом в надплунжерную полость гидрокомпенсатора воздух внутри этой полости при открытии клапана будет сжиматься и гидрокомпенсатор будет недожат, что приведет к появлению характерного стука работы клапанного механизма с увеличенными зазорами.
Для удаления воздуха из гидрокомпенсаторов выполните следующее:
— проверьте уровень масла в картере двигателя и при необходимости доведите его до нормы
— пустите двигатель и прогрейте его на холостом ходу в течение 1 -3 мин;
— увеличьте частоту вращения коленчатого вала до 3000 мин", затем резко уменьшите до частоты холостого хода и дайте поработать двигателю на холостом ходу;
— повторите цикл и проверьте, исчезает ли шум механизма привода клапанов. Если гидрокомпенсаторы исправны, шум исчезает через 10-30 циклов;
— после исчезновения шума повторите цикл удаления воздуха еще 5 раз;
— дайте двигателю поработать на холостом ходу 1-3 мин и убедитесь, что шум механизма привода клапанов исчез.
Если шум механизма привода клапанов не исчез после удаления воздуха и прогрева двигателя до рабочей температуры, выявите неисправные гидрокомпенсаторы.
1. Заглушите двигатель и сразу же после его остановки снимите крышку головки блока цилиндров
2. Установите поршень 1-го цилиндра в ВМТ такта сжатия
3. Для проверки работоспособности гидрокомпенсаторов двигателя нажмите на плечо нажимного рычага, опирающегося на гидрокомпенсатор. Если рычаг удается переместить практически без усилия, гидрокомпенсатор неисправен.
4. Аналогично проверьте состояние гидрокомпенсаторов остальных цилиндров.
После определения неисправных гидрокомпенсаторов сначала надо попробовать их промыть.
Вам потребуются: ключи «на 10», «на 12», пассатижи, отвертка с плоским лезвием, три емкости вместимостью примерно 5 дм3 каждая для промывочного дизельного топлива, отрезок закаленной проволоки диаметром 0,5 мм и длиной примерно 10 см.
1. Снимите крышку головки блока цилиндров
2. Снимите распределительный вал со стороны заменяемого гидрокомпенсатора
3. . и нажимной рычаг клапана
4. Извлеките неисправный гидрокомпенсатор.
5. Приготовьте три одинаковые емкости для промывки гидрокомпенсаторов вместимостью примерно 5 дм3. Размеры каждой емкости должны быть достаточными для того, чтобы гидрокомпенсатор, опущенный на дно емкости в вертикальном положении, был полностью погружен в жидкость. Заполните емкости чистым дизельным топливом.
примерно 5 дм3. Размеры каждой емкости должны быть достаточными для того, чтобы гидрокомпенсатор, опущенный на дно емкости в вертикальном положении, был полностью погружен в жидкость. Заполните емкости чистым дизельным топливом.
Пометьте емкости любым способом (например, цифрами 1, 2, 3), чтобы использовать каждую из них для своей цели. Первую емкость применяйте только для предварительной промывки гидрокомпенсаторов, вторую — для окончательной промывки, а третью — для заправки гидрокомпенсаторов.
6. Поместите гидрокомпенсатор в первую емкость и очистите его наружную поверхность.
Для наружной очистки гидрокомпенсатора применяйте только полимерную щетку. Металлической щеткой можно поцарапать прецизионно обработанную поверхность плунжера.
7. Погрузив гидрокомпенсатор в первую емкость наполовину плунжером вниз, легким нажатием проволоки через отверстие отожмите шарик клапана и, удерживая шарик отжатым, перемещайте плунжер гидрокомпенсатора 5-10 раз до тех пор, пока перемещение плунжера не станет совершенно свободным. Если не удается добиться легкого перемещения плунжера, замените гидрокомпенсатор
Пружина клапана гидрокомпенсатора очень слабая, сильным нажатием на шарик клапана ее можно повредить.
8. Извлеките гидрокомпенсатор из емкости
и, отжав шарик клапана, перемещайте плунжер до полного вытекания дизельного топлива из гидрокомпенсатора.
9. Поместите гидрокомпенсатор во вторую емкость и повторите операцию 7.
10. Извлеките гидрокомпенсатор из емкости и слейте из него дизельное топливо, как описано в операции 7.
11. Поместите гидрокомпенсатор на дно третьей емкости вертикально, плунжером вверх, и отожмите проволокой шарик его клапана.
Третью емкость с дизельным топливом используйте только для заправки гидрокомпенсаторов. Использовать ее для промывки запрещено.
12. Удерживая шарик клапана отжатым, переместите плунжер вниз и затем медленно перемещайте вверх, чтобы надплунжерная полость гидрокомпенсатора заполнилась дизельным топливом.
13. Извлеките гидрокомпенсатор из емкости; удерживая его плунжером вверх, с небольшим усилием нажмите на плунжер и убедитесь, что он остался неподвижным.
Одновременно проверьте общую высоту гидрокомпенсатора, сравнив его с новым гидрокомпенсатором.
Если при проверке удалось переместить плунжер гидрокомпенсатора, повторите операции 10 и 11 до полного заполнения полости гидрокомпенсатора дизельным топливом. Если и после этого гидрокомпенсатор не достигнет рабочего состояния или его общая высота меньше высоты нового гидрокомпенсатора, замените его.
До сборки механизма привода клапанов храните заправленные гидрокомпенсаторы только в положении вертикально вверх плунжерами. Избегайте попадания грязи в _идро-компенсаторы.
Устанавливайте гидрокомпенсаторы на двигатель как можно быстрее после заправки, чтобы исключить возможную потерю дизельного топлива.
14. Установите гидрокомпенсатор и все снятые детали в порядке, обратном снятию.
15. Пустите двигатель, дайте ему поработать 1-3 мин на холостом ходу. При необходимости удалите воздух из гидрокомпенсаторов, как описано выше в данном подразделе.
Регулировка клапанов двигатель 3е тойота карбюратор
Тойота Королла E150 (2010+). Регулировка зазоров в приводе клапанов двигателя
Не отрегулированы зазоры в приводе клапанов двигателя
Для чего нужна регулировка клапанов
У современного автомобиля два клапана на цилиндр (или более). Один из них запускает горючую смесь, а другой выпускает отработавшие газы (они называются впускной и выпускной). А механизм, который приводит в действие эти клапаны и устанавливает порядок их работы, называется газораспределительный или клапанным. После нагрева двигателя, детали расширяются. Следовательно, на холодном моторе между некоторыми его деталями должны быть строго определенные зазоры.
Если клапаны неправильно отрегулированы — это может привести к снижению эффективности работы двигателя и уменьшению ресурса его деталей. Например, при маленьких зазорах клапаны и их седла будут подгорать — снизиться общий ресурс мотора. При больших зазорах, когда клапаны открываются не полностью, мощность двигателя будет заметно падать — услышите отчетливый металлический стук.
Что будет, если будут маленькие зазоры клапанов?
Маленькие зазоры клапанов будут приводить к подгоранию седел клапанов.
Что будет, если будут большие зазоры клапанов
Большие зазоры клапанов будут приводить к неполному открытию клапанов, что будет сказываться на мощности двигателя. Увеличенные зазоры клапанов можно распознать по характерному металлическому стуку. Шумы в двигателе могут сигнализировать о неисправности ГРМ.
Данные тепловых зазоров есть в руководстве по ремонту автомобиля. Они различны для каждого мотора. Заметьте, что для впускного и выпускного клапанов, а иногда и для разных цилиндров зазоры разные.
Периодичность регулировки клапанов, если она предусмотрена конструкцией мотора, указывается в руководстве по эксплуатации автомобиля.
Как происходит регулировка
Для того, чтобы проверить и отрегулировать зазор, двигатель должен быть холодным. Тепловой зазор проверяют плоским щупом определенной толщины. Настройка производится поворотом регулировочных винтов коромысел в требуемую сторону.
Чтобы начать регулировку, установите поршень цилиндра, который собираетесь регулировать, в верхнюю мертвую точку такта сжатия. В этом положении оба клапана данного цилиндра закрыты, а коромысла должны свободно качаться в пределах зазора.
Затем отпускаете контргайку на регулировочном винте или болте. При помощи плоского щупа и регулировочного винта (болта) настройте необходимый зазор, затем затяните контргайку. Будьте внимательны: иногда после затяжки контргайки зазор может измениться, поэтому данную операцию необходимо делать аккуратно. После затяжки снова его проверьте. Зазор станет оптимальным тогда, когда щуп будет проходить в него, преодолевая небольшое усилие. Если он проходит слишком легко или слишком тяжело, отрегулируйте заново.
Потом, поворачивая коленчатый вал на пол-оборота, нужно отрегулировать зазор в клапанах других цилиндров. Здесь необходимо соблюдать порядок работы цилиндров двигателя Вашего автомобиля (например, 1-3-4-2). Коленвал следует поворачивать только по часовой стрелке и только за ручку "кривого стартера" (пусковая рукоятка) или же за болт крепления шкива привода генератора. Можно поворачивать коленвал за вывешенное ведущее колесо, но здесь необходимо соблюдать осторожность.
ПОЧЕМУ НА НЕКОТОРЫХ МОТОРАХ КЛАПАНЫ РЕГУЛИРОВАТЬ НЕ НУЖНО
Неоднократное уточнение о том, что регулировка клапанов должна быть предусмотрена конструкцией мотора, весьма важно: ведь многие двигатели этой процедуры не требуют. Зависит это от того, оснащен ли мотор гидрокомпенсаторами: это устройства, предназначенные для автоматической регулировки теплового зазора. Они работают за счет масла, поступающего в них из двигателя (поэтому, собственно, и называются «гидрокомпенсаторами») и полностью исключают необходимость периодической ручной регулировки клапанов. Сами они, конечно же, тоже не вечны – о необходимости их проверки и замены говорит все тот же цокающий стук, не исчезающий вскоре после запуска, а порой даже после прогрева двигателя. Однако главное, что нужно знать в контексте этого материала – это то, что моторам, оснащенным гидрокомпенсаторами, регулировка клапанов не нужна.
Если в двигателе транспортного средства гидрокомпенсаторов нет, то регулировать клапана необходимо вручную. О том, что пришла пора заняться этим делом, довольно легко узнать по некоторым симптомам. Одним из них является характерное «цокание» клапанов, которое уже было упомянуто выше, а другим — то, что двигатель начинает «троить», в его цилиндрах или существенно падает, или же полностью пропадает компрессия. Как только проявляется хотя бы один из этих симптомов, необходимо проверить размеры промежутков в клапанном механизме.
Двигатели Toyota 3E, 3E-E, 3E-T, 3E-TE
Третьей ступенью модернизации малолитражных двигателей корпорации Toyota Motor стала серия 3E. Первый мотор увидел свет в 1986 году. Серия 3E в разных модификациях выпускалась вплоть до 1994 г., и устанавливалась на следующие автомобили Toyota:
- Tersel, Corolla II, Corsa EL31;
- Starlet EP 71;
- Corona ET176 (VAN);
- Sprinter, Corolla (Van, Wagon).
Каждое последующее поколение автомобиля становилось больше и тяжелее предшественника, что требовало повышенной мощности. Рабочий объем двигатели 3E серии был доведен до 1,5 л. за счет установки другого коленчатого вала. Конфигурация блока получилась с длинноходными поршнями, где рабочий ход существенно превышает диаметр цилиндра.
Как устроен мотор 3E
Данный ДВС представляет собой карбюраторный поперечно расположенный силовой агрегат с четырьмя цилиндрами, расположенными в ряд. Степень сжатия, по сравнению с предшественником, несколько уменьшилась, и составляла 9,3:1. Мощность такой версии достигала 78 л.с. при 6 000 об/мин.
Материал блока цилиндров — чугун. По-прежнему, принят ряд мер по облегчению двигателя. В их числе головка блока цилиндров, изготовленная из алюминиевого сплава, облегченный коленчатый вал, другие.
В алюминиевой головке установлено по 3 клапана на каждый цилиндр, распределительный вал один, по схеме SOHC.
Конструкция мотора, по-прежнему, достаточно проста. Различные ухищрения для того времени в виде изменяемых фаз газораспределения, гидравлических компенсаторов зазоров клапанов, отсутствуют. Соответственно клапаны нуждаются в регулярной проверке зазоров и регулировке. За подачу топливовоздушной смеси в цилиндры отвечал карбюратор. Принципиальных отличий от такого устройства на предыдущей серии моторов нет, отличие только в диаметре жиклеров. Соответственно карбюратор получился в целом надежным, но остался сложным в регулировке. Правильно настроить его под силу только опытному мастеру. Система зажигания полностью перекочевала с карбюраторного агрегата 2Е без каких либо изменений. Это электронное зажигание в паре с механическим распределителем. Система по-прежнему досаждала владельцам периодически возникающими пропусками зажигания в цилиндрах из-за ее неполадок.
Этапы модернизации мотора 3E
В 1986 году, через несколько месяцев после начала выпуска 3E, в серию был запущен новый вариант двигателя 3E—E. В этой версии карбюратор был заменен распределенным электронным впрыском топлива. Попутно потребовалось модернизация впускного тракта, системы зажигания и электрооборудования автомобилей. Принятые меры дали положительный эффект. Мотор избавился от необходимости в периодической регулировке карбюратора и от сбоев в работе двигателя из-за ошибок системы зажигания. Мощность двигателя в новой версии составила 88 л.с. при 6000 оборотов минуту. Моторы, выпущенные в период с 1991 по 1993 г.г., были дефорсированы до 82 л.с. Агрегат 3E-E считается наименее затратным в обслуживании, если пользоваться качественными горюче-смазочными материалами.
В 1986 году, практически параллельно с инжектором, на двигатели 3Е-ТЕ стали устанавливать турбонаддув. Установка турбины потребовала уменьшения степени сжатия до 8,0:1, иначе работа двигателя под нагрузкой сопровождалось детонацией. Мотор выдавал мощность 115 л.с. при 5600 об.мин. Обороты максимальной мощности были снижены для уменьшения тепловых нагрузок на блок цилиндров. Турбомотор устанавливался на Тойота Королла 2, она же Toyota Tercel.
Достоинства и недостатки моторов 3E
Конструктивно 3 серия малолитражных моторов Тойота повторяет первую и вторую, отличия в рабочем объеме двигателя. Соответственно все плюсы и минусы перешли по наследству. ДВС 3E считаются самыми недолговечными из всех бензиновых двигателей Тойота. Пробег этих силовых установок до капремонта редко превышает 300 тыс. км. Турбодвигатели не ходят более 200 тыс. км. Это связано с высокой тепловой нагрузкой моторов.
Главное достоинство моторов серии 3E — простота обслуживания и неприхотливость. Карбюраторные версии нечувствительны к качеству бензина, инжекторные немного критичнее. Привлекает высокая ремонтопригодность, невысокие цены на запасные части. Силовые установки 3E избавились от самого большого недостатка предшественников — пробитой прокладки ГБЦ при малейшем перегреве двигателя. Сказанное не относится к версии 3Е-ТЕ. К существенным недостаткам можно отнести:
- Недолговечные сальники клапанов. Это приводит к забрызгиванию свечей маслом, повышенной дымности. Сервисные службы предлагают сразу заменять родные маслосъемные колпачки более надежными, силиконовыми.
- Чрезмерное образование нагара на впускных клапанах.
- Залегание поршневых колец после 100 тыс. км пробега.
Все это приводит к потере мощности, неустойчивой работе ДВС, но лечится без больших затрат.
Технические характеристики
Моторы серии 3E обладали следующими техническими характеристиками:
Двигатель | 3E | 3E-E | 3E-TE |
---|---|---|---|
Количество и расположение цилиндров | 4, в ряд | 4, в ряд | 4, в ряд |
Рабочий объем, см³ | 1456 | 1456 | 1456 |
Система питания | карбюратор | инжектор | инжектор |
Максимальная мощность, л.с. | 78 | 88 | 115 |
Максимальный крутящий момент, Нм | 118 | 125 | 160 |
Головка блока | алюминий | алюминий | алюминий |
Диаметр цилиндра, мм | 73 | 73 | 73 |
Ход поршня, мм | 87 | 87 | 87 |
Степень сжатия | 9,3 : 1 | 9,3:1 | 8,0:1 |
Газораспределительный механизм | SOHC | SOHC | SOHC |
число клапанов | 12 | 12 | 12 |
Гидрокомпенсаторы | нет | нет | нет |
Привод ГРМ | ремень | ремень | ремень |
Фазорегуляторы | нет | нет | нет |
Турбонаддув | нет | нет | да |
Рекомендуемое масло | 5W–30 | 5W–30 | 5W–30 |
Объем масла, л. | 3,2 | 3,2 | 3,2 |
Тип топлива | АИ-92 | АИ-92 | АИ-92 |
Экологический класс | ЕВРО 0 | ЕВРО 2 | ЕВРО 2 |
Примерный ресурс, тыс. км | 250 | 250 | 210 |
Серия силовых установок 3E пользовалась репутацией надежных, неприхотливых, но недолговечных моторов, склонных к перегреву при высоких нагрузках. Моторы просты по конструкции, каких-то сложных особенностей в них нет, поэтому они пользовались популярностью у автолюбителей благодаря простоте обслуживания и высокой ремонтопригодности.
Для тех, кто предпочитает контрактные двигатели предложение достаточно велико, найти рабочий мотор не составит большой сложности. Но остаточный ресурс будет чаще всего невелик из-за большого возраста силовых установок.