Taxitaxitaxi.ru

Эволюшн
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Радиосхемы Схемы электрические принципиальные

Радиосхемы Схемы электрические принципиальные

Стабилизатор частоты вращения коллекторного двигателя

Электроника в быту

В. ТУШНОВ, г. Луганск
Радио, 2002 год, № 9

Широкое применение в электроприводах различных механизмов находят коллекторные двигатели с независимым возбуждением. Они создают значительный крутящий момент, позволяя при этом изменять частоту вращения вала от нулевой до максимальной рабочей. Автору предлагаемой статьи удалось изготовить сравнительно простое устройство для ручного регулирования частоты вращения электродвигателя, автоматически поддерживающее ее постоянной при изменениях напряжения питания и механической нагрузки на вал.

Устройства управления коллекторными электродвигателями с независимым возбуждением двлят на две основные группы: широтно-импульсные и фазовые регуляторы. Последние зарекомендовали себя более надежными. Однако промышленные изделия такого типа построены по слишком громоздким схемам. Анализ показал, что их можно значительно упростить без ухудшения технических характеристик. Предлагаемый стабилизатор и регулятор частоты вращения предназначены для двигателей КПА-563, КПК-564 и аналогичных мощностью 90. 120 Вт при напряжении питания до 42 В.

Схема устройства показана на рисунке. На электродвигатель М1 подают пульсирующее напряжение, полученное с помощью диодного моста VD1 — VD4 из переменного 36. 42 В. Цепь VD6C2 превращает пульсирующее напряжение в постоянное, которым через стабилизатор напряжения на стабилитроне VD9 и транзисторе VT1 питают микросхему DA1. Светодиод HL1 служит индикатором включения питания.

Стабилизатор частоты вращения коллекторного двигателя

Для увеличения кликните по изображению (откроется в новом окне)

Со стабилитрона VD10 снимают образцовое напряжение для цепей стабилизации и регулирования. Требуемую частоту вращения устанавливают переменным резистором R12, изменяющим напряжение, которое подают на неинвертирующий вход ОУ DA1 через фильтр R15C5R16. Здесь его суммируют с напряжением обратной связи по току. Последнее снимают с резистора R3, включенного последовательно в цепь якоря двигателя М1, и подают на вход ОУ через делитель напряжения R5R8 и фильтр R3C4R13. Элементы R6, VD7, VD8 ограничивают напряжение токовой обратной связи при перегрузках двигателя.

На инвертирующем входе ОУ DA1 образцовое напряжение, поступающее через резисторы R19 и R20, суммируют с напряжением, которое снимают с якоря двигателя М1 и подают на ОУ через резисторы R14, R21, R22.

ОУ DA1 включен по схеме интегрирующего усилителя, коэффициент передачи и постоянная времени которого определяют характеристики системы стабилизации в целом. Выходное напряжение ОУ управляет формирователем импульсов на однопереходном транзисторе VT2. От их длительности зависят угол открытия тринистора VS1 и среднее значение тока, протекающего через обмотку якоря двигателя М1. Оптрон U1 изолирует цепи управления от силовых.

Детали и налаживание

В устройстве использованы конденсаторы С1 — МБГО или МБГЧ, С2, С4, С5, С9 — К50-35, С7, С10 — серий К73, СЗ, С6, С8 — малогабаритные керамические; резисторы R2 — С5-16, R15, R19, R22 — СП5-2, R12 — ППБ-1В, остальные—МЛТ. При замене КР140УД1Б другим ОУ, например, К140УД6, следует учесть их различия в назначении выводов и парвметрах цепей коррекции

Для нaлaживaния стабилизатора необходим регулируемый источник переменного напряжения 36. 42 В. Кроме того, нужно иметь возможность контролировать частоту вращения вала двигателя при изменении механической нагрузки на него.

Простой и удобный датчик частоты вращения — обычная магнитофонная головка, установленная на расстоянии нескольких миллиметров от вала, на котором закреплен небольшой постоянный магнит. Импульсы, наведенные в обмотке головки, можно наблюдать на экране осциллографа, в их частоту — измерять частотомером. Переменную механическую нагрузку на вал создают, прижимая к нему кусок плотной резины. Этот способ пригоден для двигателей мощностью не более 200 Вт.

Приступая к налаживанию, вместо постоянного резистора R5 устанавливают подстроечный номиналом 470 Ом Движок переменного резистора R12 переводят в положение, соответствующее минимальному сопротивлению. Включив питание, подстроечным резистором R19 добиваются полной остановки двигателя. Затем подстроечным резистором R15 заставляют двигатель начать вращение с минимальной скоростью.

После этого движок переменного резистора R12 устанавливают в среднее положение и, дождавшись разгона двигателя до постоянной скорости, механически нагружают его вал. Изменением сопротивления резистора R5 добиваются минимальной зависимости частоты вращения от нагрузки. Теперь подстроечный резистор можно заменить постоянным нужного сопротивления.

Подстроечный резистор R22 устанавливают в положение, в котором обороты двигателя остаются практически постоянными при изменении напряжения питания на 10. 20%. Затем вновь уменьшают сопротивление резистора R12 до минимума и подстроечным резистором R19 устанавливают частоту вращения равной нижней границе заданного интервала регулирования. На этом налаживание стабилизатора закончено.

Регулятор оборотов коллекторного двигателя

Так как разброс скоростей коллекторных двигателей постоянного тока даже в пределах одного исполнения может составлять до 10-20%, для более эффективного использования в промышленных системах они чаще всего используются совместно со специальными регуляторами оборотов. Регулятор оборотов, во-первых, может компенсировать разброс скоростей, обусловленный разбросом параметров составных частей двигателя. Во-вторых, регулятор адаптирует скорость выбранной модели к требованиям и алгоритму работы конкретной системы, в которой этот двигатель установлен. В третьих, использование регулятора оборотов коллекторного двигателя позволяет снизить пусковой ток в момент старта и предотвращает таким образом возникновение пиков нагрузки в цепи питания.

Читайте так же:
Как понять когда синхронизировать карбюраторы

Способы регулирования частоты оборотов коллекторного двигателя

Если рассматривать работу коллекторного двигателя в общих чертах, можно сказать, что частота вращения ротора двигателя постоянного тока пропорциональна ЭДС (приложенное напряжению минус потери на сопротивление), а величина крутящего момента пропорциональна току в его обмотке. Работа регулятора оборотов коллекторного двигателя может базироваться на использовании источников питания или батарей с различным номиналом или регулировкой выходного напряжения, на применении сопротивлений, либо основываться на электронном управлении. Направление вращения может быть изменено либо направлением действия магнитного поля, либо изменением подключения якоря. Для этого используются специальные контакторы направления.

Действующее значение напряжения может регулироваться путем использования последовательно установленных сопротивлений или электронных переключающих устройств, сделанных с использованием тиристоров, транзисторов, выпрямителей и др.

Параллельно-последовательное регулирование оборотов коллекторного двигателя

Параллельно-последовательное регулирование было стандартным методом управления железнодорожных тяговых электродвигателей до начала развития силовой электроники. Электрические локомотивы и поезда, как правило, имели по четыре электромотора, которые могли быть сгруппированы тремя различными способами:

  • Все четыре мотора подключены последовательно (каждый из двигателей получал четверть от общего значения напряжения в линии);
  • Две параллельно подключенные группы по два последовательно соединенных мотора (каждый из двигателей получал половину от общего значения напряжения в линии);
  • Все четыре мотора подключены параллельно (каждый из двигателей получал полное значения напряжения в линии).

Эти три способа подключения обеспечивали три различные скорости вращения при минимальных потерях. В моменты старта и ускорения дополнительное регулирование скорости обеспечивалось резисторами. Впоследствии такая система была вытеснена регуляторами оборотов коллекторных двигателей, основанными на электронной системе управления.

Регулятор оборотов на основе ослабления поля

Увеличения частоты оборотов коллекторного двигателя постоянного тока можно добиться путем ослабления электромагнитного поля. Снижение напряжения электрического поля осуществляется путем включения сопротивления последовательно с шунтирующей обмоткой возбуждения, либо включением сопротивлений вокруг включённой последовательно обмотки возбуждения. При ослаблении электромагнитного поля снижается обратная ЭДС, больший ток протекает через обмотку якоря, что приводит к повышению частоты вращения двигателя. Обычно в регуляторах оборотов коллекторных двигателей метод ослабления поля не используется сам по себе, но применяется в совокупности с другими методами (такими, как, например, параллельно-последовательное регулирование оборотов).

Использование модулятора

В основе регуляторов оборотов коллекторных двигателей может лежать использование электрической цепи с применением модулятора: среднее значение напряжения, приложенного к двигателю, изменяется путем очень быстрого включения и выключения источника напряжения. Изменяя соотношение длительности состояний «включено» и «выключено», можно влиять на среднее значение напряжения, и как следствие, на частоту оборотов двигателя.

Процентное отношение длительности состояния «включено» от величины напряжения питания определяет среднее значение напряжения, приложенного к коллекторному двигателю. К примеру, при напряжении питания 24В постоянного тока и 50% состояния «включено», среднее значение напряжения, приложенного к двигателю, составит 12В. Во время состояния «выключено» индуктивность якоря вызывает дальнейшее протекание тока через диод, который называется диод обратной цепи и включен параллельно цепи двигателя.

Таким образом, напряжение питания будет циклически снижаться до нуля, и следовательно, среднее напряжение, приложенное к двигателю, периодически будет больше, чем напряжение питания до тех пор, пока процентное соотношение состояния «включено» не достигнет 100%. При соотношении 100% ток источника питания и ток двигателя равны. При использовании метода быстрого переключения питающего напряжения потери энергии ниже, чем при последовательном подключении сопротивлений.

Такой метод также называется широтно-импульсным модулированием (ШИМ) и часто регулируется микропроцессором. В регуляторах оборотов коллекторных двигателей дополнительно устанавливаются фильтры, сглаживающие среднее приложенное к мотору выходное напряжение, что приводит к снижению шума двигателя.

Большая Энциклопедия Нефти и Газа

Наиболее простым способом, обеспечивающим плавное регулирование частоты вращения АД, является изменение скольжения. Принципиальным недостатком Этого способа регулирования частоты вращения является низкий КПД, так как потери в роторе пропорциональны скольжению. И какие бы ни предлагались варианты схем изменения скольжения, а их существуют десятки, в электромеханическом преобразователе энергии возможности преобразования в теплоту и в механическую мощность одинаковые. В АД это проявляется особенно наглядно ( РЭ2 Рэм s) Эта связь не зависит от способа изменения скольжения, когда в процессе регулирования участвует одна машина.  [47]

Читайте так же:
Регулировка клапанов на бычке 5301

Следовательно, регулирование частоты вращения двигателей параллельного возбуждения последовательными резисторами в силовой цепи дает малоустойчивые частоты вращения, особенно при низких частотах вращения. Кроме того, этот способ регулирования частоты вращения неэкономичен. Его применяют только для приводов кратковременного или повторно-кратковременного режима, используя ступени сопротивления пускового резистора.  [49]

Из формулы следует, что птд можно регулировать либо изменением подводимого к зажимам электродвигателя напряжения, либо изменением магнитного потока. На тепловозах применяют оба способа регулирования частоты вращения якоря .  [50]

Изменение частоты вращения путем шунтирования обмотки якоря или включением добавочного сопротивления последовательно с якорем осуществляется просто, однако эти способы регулирования неэкономичны из-за электрических потерь в добавочных сопротивлениях. По этой же причине неэкономичен и способ регулирования частоты вращения изменением напряжения, подводимого к двигателю, если оно осуществляется с помощью реостата.  [52]

Диапазон регулирования D n max / n min, где n max и n min — верхний и нижний пределы регулирования. Это зависит от возможностей самого двигателя, способа регулирования частоты вращения и системы его управления.  [53]

Регулирование частоты вращения асинхронных двигателей с фазным ротором может быть осуществлено с помощью резисторов в цепи ротора по схеме рис. 3.7, а. Этот способ имеет те же преимущества и недостатки, что и способ регулирования частоты вращения двигателя постоянного тока включением резистора в цепь якоря.  [54]

Регулирование частоты вращения асинхронных двигателей с фазным ротором может быть осуществлено с помощью сопротивлений в цепи ротора по схеме на рис. 3.7, а. Этот способ имеет те же преимущества и недостатки, что и способ регулирования частоты вращения двигателя постоянного тока включением сопротивления в цепь якоря.  [55]

Лучшие механические характеристики и меньшие потери в двигателе постоянного тока достигаются при регулировании частоты вращения за счет подводимого к двигателю напряжения. Но, как и в машинах переменного тока, при этом способе регулирования частоты вращения необходимо иметь громоздкое устройство, обеспечивающее регулирование напряжения. Обычно это электромашинное устройство. В автономных системах вместо приводного электродвигателя, вращающего генератор постоянного тока, применяются дизели, двигатели внутреннего сгорания и паровые или газовые турбины.  [56]

Второй раздел посвящен основам теории асинхронных машин. Рассматриваются принцип действия, разновидности асинхронных машин, их режимы работы, механические и рабочие характеристики, пусковые ражи мы к основные способа регулирования частоты вращения асинхронных электродвигателей . Выведены наиболее общие и точные схемы завещания и выражения токов, злектродвижуних сил и магнитного потокосцепдения асинхронных машин. Показано, что из них при определенных допущениях слэдувт в известном смысла приближенные схемы замещения, выражения токов и моментов, описанные в известных литературных источниках.  [57]

Второй способ регулирования скорости — путем изменения сопротивления цепи якоря — является надежным и простым. Однако при этом значительная часть мощности теряется на нагрев регулировочного реостата. Простым и экономичным является третий способ регулирования частоты вращения — изменением магнитного потока возбуждения Ф с помощью реостатов в цепи обмоток возбуждения или с помощью усилителей.  [58]

Регулирование частоты вращения, пуск и торможение электродвигателей переменного тока

Регулирование частоты вращения, пуск и торможение электродвигателей переменного тока

У коллекторных электродвигателей переменного тока частоту вращения регулируют способом, указанным для электродвигателя постоянного тока с последовательным возбуждением.

Регулирование частоты вращения изменением частоты тока является наиболее экономичным, но для питания электродвигателя требуется отдельный генератор или преобразователь с регулируемыми частотой и напряжением. При этом способе необходимо стремиться, чтобы характеристики асинхронного электродвигателя обладали достаточной жесткостью, которую обеспечивают совместным регулированием частоты тока и напряжения.

При пропорциональном понижении частоты тока и напряжения жесткость механической характеристики 1 (рис. 1) и максимальный момент Мmах уменьшаются незначительно по сравнению с естественной характеристикой 0. К преимуществам частотного регулирования следует отнести широкий диапазон (до 12:1) и плавность.

Регулирование частоты вращения изменением числа пар полюсов применяют только для асинхронных электродвигателей с короткозамкнутым ротором, так как у двигателей с фазным ротором потребовалось бы одновременное переключение обмотки ротора, усложняющее его схему и конструкцию.

Число пар полюсов можно изменить переключением числа секций одной обмотки или переключением двух независимых обмоток. В первом случае обмотка статора состоит из двух равных частей, включаемых последовательно или параллельно. Такое переключение позволяет изменить число пар полюсов в 2 раза и, следовательно, менять частоту вращения электродвигателя в отношении 2:1. Применение двух обмоток с различным числом пар полюсов позволяет менять частоту вращения в различных соотношениях, например, 1:3; 2:3 и т.д.

Читайте так же:
Синхронизация времени на компьютере с другим компьютером

Механические характеристики асинхронного электродвигателя при различной частоте тока

Двигатели, способные работать при двух различных числах пар полюсов, называют двухскоростными. Их конструируют для работы с постоянным моментом или постоянной мощностью.

Кроме двухскоростных двигателей, применяют трех- и четырехскоростные. Промышленность выпускает двухскоростные двигатели с одной обмоткой в статоре, трех- и четырехскоростные — с двумя обмотками, которые в свою очередь могут переключаться в отношении 2:1. Этот способ регулирования экономичен (двигатели имеют достаточно жесткие характеристики), но требует сложного переключающего устройства; кроме того, у двигателей с двумя обмотками резко снижается использование активной меди, так как при работе одной из обмоток вторая выключена. Однако благодаря своим преимуществам двигатели с переключением числа пар полюсов широко применяются в судовых электроприводах, не требующих плавного регулирования частоты вращения (шпилей, брашпилей и др.).

Регулирование изменением параметров цепей электродвигателя распространено у двигателей с фазным ротором. При введении в цепь ротора активного сопротивления частота вращения двигателя уменьшается при том же значении вращающего момента (см. рис. 2, характеристика 1). Этот способ неэкономичен, требует дорогого и громоздкого реостата, причем уменьшение частоты вращения составляет 10—20 %, поэтому в судовых условиях он применяется сравнительно редко и в основном на короткие промежутки времени.

Пуск синхронных двигателей. Различают прямой пуск и пуск с ограничением пускового тока.

Прямой пуск прост, но при включении возникают большие пусковые токи, достигающие значений Iп = (4-7) Iном.

При питании электродвигателя от электростанции ограниченной мощности пусковые токи могут вызвать недопустимые кратковременные снижения напряжения, нарушающие работу включенных приемников электрической энергии. Поэтому прямой пуск применяется в том случае, если мощность электродвигателя во много раз меньше мощности электростанции, от которой он питается.

При мощности электродвигателя соизмеримой с мощностью электростанции применяют различные способы пуска с ограничением пускового тока: переключением обмотки статора двигателя со «звезды» на «треугольник»; при помощи автотрансформатора; включением резисторов в цепь статора; включением реакторов в цепь статора; включением резисторов в цепь ротора (для двигателей с фазным ротором).

При пуске переключением обмоток статора со «звезды» на «треугольник» сначала замыкается выключатель Q1, при этом обмотки статора двигателя оказываются включенными «звездой» (рис. 2, а). После разгона двигателя выключатель Q1 размыкается, а выключатель Q2 замыкается, и обмотки включаются на «треугольник». При этом способе пусковой ток уменьшается в 3 раза.

Пуск двигателя переключением со «звезды» на «треугольник»

Преимуществом способа является его простота, недостатком — уменьшение пускового момента также в 3 раза (рис. 2, б). Уменьшение момента объясняется тем, что при соединении обмоток «звездой» напряжение на них в √3 раза меньше, чем при соединении «треугольником», а как видно из формулы (1), момент зависит от напряжения во, второй степени. В некоторых случаях пусковой момент при соединении обмоток «звездой» оказывается недостаточным, тогда применение способа становится невозможным.

Преимуществом пуска двигателя с помощью автотрансформатора по сравнению с предыдущим способом является возможность установить любое первоначальное напряжение (рис. 3, а) и затем плавно увеличивать его. Недостатком этого способа являются высокая стоимость, большие масса и габаритные размеры пускового автотрансформатора. Характеристики приведены на рис. 3, б.

Включение на время пуска в цепь статора резисторов (рис. 4,а) или реакторов приводит к большим активным потерям в случае резисторов и уменьшению коэффициента мощности в случае реакторов, однако вследствие простоты этих способов они находят достаточно широкое применение. Как видно из формул (2) и (3), включение элементов в цепь статора увеличивает критическую частоту вращения Мmах1 и уменьшает момент Mmах (характеристика 1, рис. 4, б).

Пуск двигателей с фазным ротором осуществляется с помощью пусковых реостатов, включенных в цепь ротора (рис. 5, а).

Пусковой реостат состоит из трех-четырех секций резисторов на каждую фазу. По мере разгона двигателя секции реостата поочередно закорачивают. Сопротивления пускового реостата рассчитывают графоаналитическим методом с использованием пусковой диаграммы. В начале пуска в цепь ротора включают реостат с полным сопротивлением, при котором пусковой момент должен быть Мп = (0,7 — 0,8)Мmах.

Механические характеристики асинхронного двигателя на рабочем участке от М = 0 до М = 0,8 Мmах можно приближенно считать прямолинейными, тогда на пусковой диаграмме (рис. 5, б) искусственная характеристика, соответствующая началу пуска, будет иметь вид прямой 4, проходящей через точки nх и г.

Пуск двигателя с помощью автотрансформатора (3). Пуск двигателя с резисторами в цепи статора (4). Пуск двигателя с фазным ротором (5)

Под действием вращающего момента двигатель начнет вращаться с увеличивающейся частотой вращения, а вращающий момент, как видно из характеристики, будет уменьшаться. Этот процесс будет продолжаться до тех пор, пока вращающий момент не станет равным моменту сопротивления Мс, причем частота вращения будет меньше номинальной, соответствующей естественной характеристике.

Читайте так же:
Регулировка скорости вращения электромотора

Для увеличения частоты вращения необходимо выключить секцию пускового реостата R3 (см. рис. 5), замкнув выключатель Q3. Обычно это делают в точке г’ (см. рис. 5, б) при вращающем моменте двигателя M1 = (1,1-1,2) Mном. Оставшееся сопротивление пускового реостата должно быть таким, чтобы момент двигателя на искусственной характеристике 3 не превышал значения пускового момента Mп, т.е. характеристика 3 должна пройти через точку «в» (считается, что за время замыкания выключателя Q3 частота вращения двигателя n3 не изменяется). Аналогично замыкают выключатели Q2 и Q1, двигатель переходит на работу в соответствии с характеристиками 2 и 1, пока не будет полностью шунтирован реостат.

Если для естественной характеристики 1

Отношение критических скольжений для искусственной характеристики 2 и естественной характеристики 1

т. е. отношение критических скольжений для искусственной характеристики 2 и естественной характеристики 1 равно отношению приведенного активного сопротивления фазы ротора, включая сопротивление секции пускового реостата, к приведенному активному сопротивлению ротора.

Далее, из известной в электротехнике формулы:

s/sкp=const

На пусковой диаграмме (см. рис. 5) скольжению s1 соответствует отрезок «оа», а скольжению s2 — отрезок «об». Обозначим длину первого отрезка lоа, второго lоа + lоб, тогда:

Сопротивления

Активное сопротивление обмотки ротора двигателя


Электрическое торможение. Способы электрического торможения двигателей переменного тока аналогичны способам торможения двигателей постоянного тока.

Режим торможения с отдачей энергии в сеть наступает при частоте вращения ротора, превышающей частоту вращения магнитного поля. Такой режим возможен при разгоне двигателя под действием падающего груза или при переключении много-скоростного электродвигателя на меньшую скорость.

При разгоне двигателя под действием падающего груза по естественной характеристике 0 (рис. 6) частота вращения увеличивается и при М = 0 достигает частоты вращения магнитного поля nх. При дальнейшем разгоне двигателя частота вращения становится больше nх, э.д.с. больше напряжения сети и машина работает в режиме генератора, отдавая в сеть активную энергию. Этому режиму соответствует участок характеристики в квадранте II.

Динамическое торможение асинхронного двигателя производится отключением обмотки статора от трехфазной питающей сети и включением ее на питание от источника постоянного тока (рис. 7), при этом в двигателе вместо вращающегося магнитного поля возникает неподвижное (nх = 0). В результате взаимодействия вращающегося ротора с неподвижным магнитным полем возникает тормозной момент (см. рис. 6, характеристика 1). Тормозной момент можно регулировать изменением напряжения постоянного тока или изменением сопротивления резистора R (см. рис. 7).

Механические характеристики асинхронной машины при различных режимах работы (6). Схема динамического торможения асинхронного электродвигателя (7)

Для двигателей с фазным ротором, кроме того, регулирование тормозного момента возможно изменением сопротивления резисторов, включенных в цепь ротора.

Торможение противовключением может быть получено при реверсировании двигателя на ходу путем переключения двух фаз обмотки статора, при этом магнитное поле начинает вращаться в обратную сторону и тормозит двигатель. На рис. 6 этому режиму соответствует участок характеристики 2, находящийся в квадранте II. Когда частота вращения двигателя уменьшится до нуля, его необходимо отключить, в противном случае он начнет вращаться в обратную сторону (участок характеристики 2 в квадранте III).

Сравнение способов торможения

Сравнивая различные способы торможения двигателей переменного тока, можно сделать вывод, что наиболее экономичным является торможение с отдачей энергии в сеть, но при нем нельзя затормозить двигатель до частоты вращения меньшей, чем частота вращения магнитного поля.

Динамическое торможение позволяет тормозить электродвигатель до частоты вращения, близкой к нулю, но требует дополнительного источника постоянного тока.

Торможение противовключением наименее эффективно, так как при больших тормозных токах тормозной момент на валу двигателя с короткозамкнутым ротором незначителен.

Поэтому данный способ торможения применяется только для двигателей с фазным ротором, у которых за счет введения в цепь ротора резисторов с большим сопротивлением можно увеличить тормозной момент при одновременном уменьшении тока (см. рис. 6, характеристика 3).

Регулирование частоты вращения двигателей с параллельным возбуждением

Регулирование частоты вращения двигателей с параллельным возбуждениемЧастоту вращения двигателей постоянного тока можно изменять тремя способами: изменением сопротивления rя цепи якоря , изменением магнитного потока Ф , изменением подводимого к двигателю напряжения U.

Первый способ применяют редко, так как он неэкономичен, дает возможность вести регулирование частоты вращения только под нагрузкой и вынуждает использовать механические характеристики, имеющие различный наклон. При регулировании по этому способу вращающий предельно допустимый момент остается постоянным. Магнитный поток не меняется, и если приближенно считать, что сила тока, определяемая длительно допустимым нагревом двигателя, одинакова на всех частотах вращения, то предельно допустимый момент также должен быть одинаков на всех скоростях.

Читайте так же:
Чем отрегулировать давление на пневмо сидение

Регулирование скорости двигателей постоянного тока с параллельным возбуждением изменением магнитного потока получило значительное распространение. Величину потока можно изменять реостатом. При увеличении сопротивления этого реостата уменьшается сила тока возбуждения и магнитный поток и увеличивается частота вращения. Каждому уменьшенному значению магнитного потока Ф соответствуют увеличенные значения n0 и b.

Таким образом, при ослаблении магнитного потока механические характеристики представляют собой прямые линии, расположенные выше естественной характеристики, непараллельные ей и имеющие тем больший наклон, чем меньшим потокам они соответствуют. Число их зависит от числа контактов на реостате и может быть достаточно большим. Таким образом, регулирование частоты вращения ослаблением потока может быть сделано практически бесступенчатым.

Если по-прежнему приближенно считать предельно допустимую силу тока на всех скоростях одинаковой, то P = const

Таким образом, при регулировании частоты вращения изменением магнитного потока предельно допустимая мощность двигателя остается постоянной при всех скоростях. Предельно допустимый момент изменяется обратно пропорционально частоте вращения. При повышении частоты вращения двигателя ослаблением поля увеличивается искрение под щетками вследствие роста реактивной э. д. с, наводимой в коммутируемых секциях двигателя.

При работе двигателя с ослабленным потоком уменьшается устойчивость работы, особенно когда нагрузка на валу двигателя является переменной. При малом значении потока заметно размагничивающее действие реакции якоря. Так как размагничивающее действие определяется величиной силы тока якоря электродвигателя, то при изменениях нагрузки частота вращения двигателя резко меняется. Для повышения устойчивости работы регулируемые двигатели с параллельным возбуждением обычно снабжают слабой последовательной обмоткой возбуждения, поток которой частично компенсирует размагничивающее действие реакции якоря.

Двигатели, предназначенные для работы с повышенными частотами вращения, должны обладать повышенной механической прочностью. При высоких скоростях усиливаются вибрации двигателя и шум при работе. Эти причины ограничивают наибольшую частоту вращения электродвигателя. Низшая частота вращения также имеет определенный практический предел.

Номинальный момент определяет размеры и стоимость двигателей постоянного тока (так же как и асинхронных двигателей). При понижении наименьшей, в данном случае номинальной, частоты вращения двигателя определенной мощности номинальный момент его возрастет. Размеры двигателя при этом увеличатся.

На промышленных предприятиях наиболее часто применяют двигатели с диапазонами регулирования

Для расширения диапазона регулирования частоты вращения изменением магнитного потока иногда употребляют особую схему возбуждения двигателя, позволяющую улучшить коммутацию и снизить влияние реакции якоря на высоких частотах вращения двигателя. Питание катушек двух пар полюсов разделяют, образуя две независимые цепи: цепь катушек одной пары полюсов и цепь другой пары.

Одну из цепей включают на постоянное напряжение, в другой изменяют величину и направление тока. При таком включении общий магнитный поток, взаимодействующий с якорем, можно изменять от суммы наибольших значений потоков катушек двух цепей до их разности.

Катушки включены так, что через одну пару полюсов всегда проходит полный магнитный поток. Поэтому реакция якоря сказывается в меньшей степени, чем при ослаблении магнитного потока всех полюсов. Так можно регулировать все многополюсные двигатели постоянного тока с волновой обмоткой якоря. При этом достигается устойчивая работа двигателя в значительном диапазоне скоростей.

Регулирование частоты вращения двигателей постоянного тока посредством изменения подводимого напряжения требует применения специальных схем.

Двигатели постоянного тока по сравнению с асинхронными значительно тяжелее и в несколько раз дороже. К. п. д. этих двигателей ниже, а эксплуатация их более сложна.

Промышленные предприятия получают энергию трехфазного тока, и для получения постоянного тока требуются специальные преобразователи. Это связано с добавочными потерями энергии. Основной причиной применения для привода металлорежущих станков двигателей постоянного тока с параллельным возбуждением является возможность практически бесступенчатого и экономичного регулирования их частоты вращения.

В станкостроении применяют комплектные приводы с выпрямителями и двигателем постоянного тока с параллельным возбуждением (рис. 1). Посредством реостата PC изменяют силу тока возбуждения электродвигателя, обеспечивая практически бесступенчатое регулирование его частоты вращения в диапазоне 2:1. В комплект привода входит пусковой реостат РП, а также аппаратура защиты, на рис. 1 не показанная.

Схема электропривода постоянного тока с выпрямителем

Рис. 1. Схема электропривода постоянного тока с выпрямителем

В ыпрямители (B1 — В6), погруженные в трансформаторное масло, и всю аппаратуру помещают в шкафу управления, а реостат PC устанавливают в месте, удобном для обслуживания.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector