Taxitaxitaxi.ru

Эволюшн
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрические машины — Регулирование частоты вращения асинхронных двигателей

Электрические машины — Регулирование частоты вращения асинхронных двигателей

Асинхронные двигатели являются основой современного электропривода переменного тока. Эффективность работы этого электропривода во многом определяется возможностями регулирования частоты вращения.
Возможности асинхронных двигателей в отношении регулирования частоты вращения ротора определяются выражением
.
Из этого выражения следует, что частоту вращения можно регулировать тремя способами: путем изменения частоты , числа пар полюсов p и скольжения s. Рассмотрим каждый из этих способов подробнее.

Регулирование частоты вращения изменением частоты подводимого напряжения

Этот способ является в настоящее время наиболее перспективным. Изменение частоты осуществляется с помощью полупроводникового преобразователя частоты (рис. 4.28, а). Одновременно с изменением частоты регулируют и напряжение , так чтобы обеспечить постоянство магнитного потока . Из выражения, связывающего напряжение с потоком Ф,
,
следует, что напряжение необходимо регулировать пропорционально частоте

.
Отклонение от этого закона приводит к изменению потока Ф, что нежелательно. Действительно, при увеличении потока возрастает насыщение магнитной цепи, растут потери в стали и намагничивающий ток. Уменьшение потока вызывает уменьшение максимального момента двигателя и ряд других нежелательных явлений.
При механические характеристики двигателя имеют показанный на рис. 4.28, б вид. При снижении частоты пусковой момент двигателя возрастает, а максимальный несколько снижается. Рабочее скольжение двигателя остается небольшим, что характеризует экономичный режим работы двигателя. Однако стоимость этого способа регулирования частоты вращения двигателя весьма высока, так как преобразователь частоты должен быть выполнен на полную мощность двигателя.

Регулирование частоты вращения изменением числа пар полюсов

Этот способ регулирования в отличие от предыдущего позволяет осуществить изменение частоты вращения только ступенями. Он используется в таких механизмах, как воздуходувки, транспортеры, подъемники, лифты. Двигатели с переключением числа пар полюсов называют многоскоростными. Обычно многоскоростные асинхронные двигатели выполняются с двумя, тремя и четырьмя ступенями скоростей. Двухскоростные двигатели изготавливаются с одной обмоткой, если числа пар полюсов соответствуют следующему отношению:
.
Трех- и четырехскоростные двигатели выпускаются с двумя обмотками. В трехскоростных двигателях только одна обмотка выполняется с переключением числа пар полюсов , а в четырехскоростных обе обмотки выполняются как двухскоростные. Обмотка ротора многоскоростных двигателей выполняется короткозамкнутой. Для нее не требуется переключения схемы соединения, так как необходимое число пар полюсов обмотки ротора образуется автоматически полем статора.
Изменение числа полюсов осуществляется путем изменения схемы соединения секций обмотки статора. На рис. 4.29 показаны три варианта соединения секций.

Вариант «а» соответствует последовательному согласному включению секций, при этом образуется магнитное поле с полюсами. В варианте «б» вторая секция включается встречно-последовательно. Результирующее поле имеет полюса. Мощность обмотки остается неизменной, , а момент, развиваемый двигателем, снижается в два раза, . В варианте «в» вторая секция включается встречно-параллельно. Результирующее поле также будет иметь полюса, но мощность обмотки возрастает в два раза, а момент двигателя остается постоянным .

Таким образом, для изменения числа пар полюсов в отношении необходимо, чтобы каждая фаза обмотки состояла из двух одинаковых частей. Когда обе части обтекаются токами одинакового направления, число полюсов , при изменении направления тока в одной из них число полюсов уменьшается вдвое, . При переключении числа полюсов с на полюсное деление уменьшается в два раза, при этом величина фазной зоны трехфазной обмотки меняется с 60° на 120° (рис. 4.30).
Так как чередование фаз для обеих скоростей должно оставаться одинаковым, то кроме изменения направления токов в зонах необходимо поменять местами две фазы обмотки. При большем числе полюсов обмотка выполняется с диаметральным шагом . Тогда при меньшем числе полюсов .
Малый шаг приводит к ухудшению использования обмотки и, следовательно, к некоторому снижению технико-экономических показателей двигателя.
Многоскоростные двигатели проектируются для различных режимов работы. Наиболее часто встречаются режимы с постоянным моментом и с постоянной мощностью . Регулирование частоты вращения с постоянным моментом обеспечивается при переключении обмотки со звезды на схему двойной звезды (рис. 4.31).
При таком переключении в два раза возрастает потребляемый из сети ток, а следовательно, и мощность двигателя , момент же при этом не меняется.

Если до переключения обмотка статора была соединена в треугольник (рис. 4.32), то после переключения ее на двойную звезду мощность двигателя практически не изменится, а момент уменьшится в два раза из-за увеличения частоты вращения.

Регулирование частоты вращения изменением скольжения

Изменять скольжение асинхронного двигателя можно разными способами: изменением подводимого к статору напряжения, введением сопротивления в цепь ротора или введением в цепь ротора дополнительной ЭДС.
При изменении напряжения статора механическая характеристика двигателя изменяется, как показано на рис. 4.33. Снижение напряжения приводит к уменьшению жесткости механической характеристики и росту скольжения. При этом частота вращения ротора снижается,
.
Регулирование частоты вращения таким способом возможно в ограниченном диапазоне изменения скольжения
.
Основным недостатком этого способа регулирования частоты вращения является низкий КПД из-за роста потерь в обмотке ротора пропорционально частоте скольжения
.

Читайте так же:
Регулировка карбюратора мотоблока ока

Поэтому он применяется только для двигателей малой мощности, работающих в системах автоматического управления.
В двигателях с фазным ротором изменить частоту вращения можно путем изменения сопротивления в роторе (рис. 4.34).
Преимущество данного способа регулирования частоты состоит в том, что максимальный момент остается неизменным. Важно также отметить, что часть потерь двигателя выносится в резистор, тем самым облегчается тепловой режим двигателя. В остальном способ аналогичен предыдущему и характеризуется низким КПД., малым диапазоном регулирования, зависящим от нагрузки, и «мягкой» механической характеристикой.

Чтобы повысить КПД двигателя при регулировании частоты вращения путем изменения скольжения, необходимо мощность скольжения использовать для совершения полезной работы или возвратить обратно в сеть. Схемы, реализующие эту идею, называются каскадными. Одной из распространенных схем данного типа является схема асинхронно-вентильного каскада (рис. 4.35).
Схема включает асинхронный двигатель с фазным ротором (АД), диодный выпрямитель (Д), сглаживающий дроссель (Др), тиристорный инвертор (И) и сетевой согласующий трансформатор (Тр). Регулирование частоты вращения осуществляется посредством изменения напряжения инвертора. Это приводит к соответствующему изменению напряжения обмотки ротора, а следовательно, и частоты вращения ротора. Мощность частоты скольжения, извлекаемая из роторной обмотки двигателя, передается в сеть через согласующий трансформатор.
Достоинством каскадных схем регулирования частоты вращения асинхронных двигателей по сравнению с частотными схемами управления в статорной цепи (рис. 4.28) является то, что полупроводниковый преобразователь выполняется на мощность скольжения, а не на полную мощность двигателя. Это обстоятельство особенно важно для мощных и сверхмощных приводов насосов, прессов, конвейеров, подъемных механизмов и др., где требуется ограниченный диапазон регулирования частоты вращения (2:1 и менее).
Асинхронно-вентильный каскад с неуправляемым выпрямителем допускает регулирование только вниз от синхронной частоты вращения. Если использовать управляемый выпрямитель, то можно осуществить регулирование частоты вращения вверх от синхронной. В этом случае направление передачи мощности скольжения меняется на противоположное.

Основные сведения о частотно-регулируемом электроприводе

Частотник в комплекте с асинхронным электродвигателем позволяет заменить электропривод постоянного тока. Системы регулирования скорости двигателя постоянного тока достаточно просты, но слабым местом такого электропривода является электродвигатель. Он дорог и ненадежен. При работе происходит искрение щеток, под воздействием электроэрозии изнашивается коллектор. Такой электродвигатель не может использоваться в запыленной и взрывоопасной среде.

Асинхронные электродвигатели превосходят двигатели постоянного тока по многим параметрам: они просты по устройству и надежны, так как не имеют подвижных контактов. Они имеют меньшие по сравнению с двигателями постоянного тока размеры, массу и стоимость при той же мощности. Асинхронные двигатели просты в изготовлении и эксплуатации.

Основной недостаток асинхронных электродвигателей – сложность регулирования их скорости традиционными методами (изменением питающего напряжения, введением дополнительных сопротивлений в цепь обмоток). Управление асинхронным электродвигателем в частотном режиме до недавнего времени было большой проблемой, хотя теория частотного регулирования была разработана еще в тридцатых годах. Развитие частотно-регулируемого электропривода сдерживалось высокой стоимостью преобразователей частоты. Появление силовых схем с IGBT-транзисторами, разработка высокопроизводительных микропроцессорных систем управления позволило различным фирмам Европы, США и Японии создать современные преобразователи частоты доступной стоимости.

Известно, что регулирование частоты вращения исполнительных механизмов можно осуществлять при помощи различных устройств: механических вариаторов, гидравлических муфт, дополнительно вводимыми в статор или ротор резисторами, электромеханическими преобразователями частоты, статическими преобразователями частоты.

Применение первых четырех устройств не обеспечивает высокого качества регулирования скорости, неэкономично, требует больших затрат при монтаже и эксплуатации. Статические преобразователи частоты являются наиболее совершенными устройствами управления асинхронным приводом в настоящее время.

Принцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что, изменяя частоту f1 питающего напряжения, можно в соответствии с выражением

неизменном числе пар полюсов p изменять угловую скорость магнитного поля статора.

Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.

Регулирование скорости при этом не сопровождается увеличением скольжения асинхронного двигателя, поэтому потери мощности при регулировании невелики. Для получения высоких энергетических показателей асинхронного двигателя – коэффициентов мощности, полезного действия, перегрузочной способности – необходимо одновременно с частотой изменять и подводимое напряжение.

Закон изменения напряжения зависит от характера момента нагрузки Mс . При постоянном моменте нагрузки Mс=const напряжение на статоре должно регулироваться пропорционально частоте:

Для вентиляторного характера момента нагрузки это состояние имеет вид:

Читайте так же:
Проверка и регулировка света фар с помощью прибора

При моменте нагрузки, обратно пропорциональном скорости:

Таким образом, для плавного бесступенчатого регулирования частоты вращения вала асинхронного электродвигателя, преобразователь частоты должен обеспечивать одновременное регулирование частоты и напряжения на статоре асинхронного двигателя.

Преимущества использования регулируемого электропривода в технологических процессах

Применение регулируемого электропривода обеспечивает энергосбережение и позволяет получать новые качества систем и объектов. Значительная экономия электроэнергии обеспечивается за счет регулирования какого-либо технологического параметра. Если это транспортер или конвейер, то можно регулировать скорость его движения. Если это насос или вентилятор – можно поддерживать давление или регулировать производительность. Если это станок, то можно плавно регулировать скорость подачи или главного движения.

Особый экономический эффект от использования преобразователей частоты дает применение частотного регулирования на объектах, обеспечивающих транспортировку жидкостей. До сих пор самым распространённым способом регулирования производительности таких объектов является использование задвижек или регулирующих клапанов, но сегодня доступным становится частотное регулирование асинхронного двигателя, приводящего в движение, например, рабочее колесо насосного агрегата или вентилятора.

Перспективность частотного регулирования наглядно видна из рисунка 1

Таким образом, при дросселировании поток вещества, сдерживаемый задвижкой или клапаном, не совершает полезной работы. Применение регулируемого электропривода насоса или вентилятора позволяет задать необходимое давление или расход, что обеспечит не только экономию электроэнергии, но и снизит потери транспортируемого вещества.

Структура частотного преобразователя

Большинство современных преобразователей частоты построено по схеме двойного преобразования. Они состоят из следующих основных частей: звена постоянного тока (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.

Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока. Силовой трехфазный импульсный инвертор состоит из шести транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.

В выходных каскадах инвертора в качестве ключей используются силовые IGBT-транзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями.

Принцип работы преобразователя частоты

Преобразователь частоты состоит из неуправляемого диодного силового выпрямителя В, автономного инвертора , системы управления ШИМ, системы автоматического регулирования, дросселя Lв и конденсатора фильтра Cв (рис.2). Регулирование выходной частоты fвых. и напряжения Uвых осуществляется в инверторе за счет высокочастотного широтно-импульсного управления.

Широтно-импульсное управление характеризуется периодом модуляции, внутри которого обмотка статора электродвигателя подключается поочередно к положительному и отрицательному полюсам выпрямителя.

Длительность этих состояний внутри периода ШИМ модулируется по синусоидальному закону. При высоких (обычно 2…15 кГц) тактовых частотах ШИМ, в обмотках электродвигателя, вследствие их фильтрующих свойств, текут синусоидальные токи.

Рис.2. Упрощенная схема инвертора с широтно-импульсной модуляцией (ШИМ).

Таким образом, форма кривой выходного напряжения представляет собой высокочастотную двухполярную последовательность прямоугольных импульсов (рис. 3). Частота импульсов определяется частотой ШИМ, длительность (ширина) импульсов в течение периода выходной частоты АИН промодули-рована по синусоидальному закону. Форма кривой выходного тока (тока в обмотках асинхронного электродвигателя) практически синусоидальна.

Регулирование выходного напряжения инвертора можно осуществить двумя способами: амплитудным (АР) за счет изменения входного напряжения Uв и широтно-импульсным (ШИМ) за счет изменения программы переключения вентилей V1-V6 при Uв = const.

Второй способ получил распространение в современных преобразователях частоты благодаря развитию современной элементной базы (микропроцессоры, IBGT-транзисторы). При широтно-импульсной модуляции форма токов в обмотках статора асинхронного двигателя получается близкой к синусоидальной благодаря фильтрующим свойствам самих обмоток.

Рис.3. Форма кривых напряжения и тока на выходе инвертора с широтно-импульсной модуляцией.

Такое управление позволяет получить высокий КПД преобразователя и эквивалентно аналоговому управлению с помощью частоты и амплитуды напряжения. Современные инверторы выполняются на основе полностью управляемых силовых полупроводниковых приборов – запираемых GTO – тиристоров, либо биполярных IGBT-транзисторов с изолированным затвором. На рис. 2.45 представлена 3-х фазная мостовая схема автономного инвертора на IGBT-транзисторах.

Она состоит из входного емкостного фильтра Cф и шести IGBT-транзисторов V1-V6 включенными встречно-параллельно диодами обратного тока D1-D6.

За счет поочередного переключения вентилей V1-V6 по алгоритму, заданному системой управления, постоянное входной напряжение Uв преобразуется в переменное прямоугольно-импульсное выходное напряжение. Через управляемые ключи V1-V6 протекает активная составляющая тока асинхронного электродвигателя, через диоды D1-D6 – реактивная составляющая тока.

Рис.4. Схема преобразователя частоты (инвертора)

И – трехфазный мостовой инвертор;
В – трехфазный мостовой выпрямитель;
Сф – конденсатор фильтра;

Регулирование частоты вращения асинхронных двигателей

Асинхронный двигатель наиболее просты в изготовлении и наиболее дешёвые, поэтому применение их в регулируемых электроприводах весьма перспективно. Известны десятки способов регулирования частоты вращения асинхронного двигателя, однако до сих пор не найдено дешёвой и экономичной системы регулирования. Из формулы следует, что скорость ротора ( ) можно регулировать тремя способами: путём изменения частоты сети ( ), числа пар полюсов машины ( р ) и скольжения (S).

Читайте так же:
Регулировка теплового зазора клапана в одном из цилиндров

Регулирование скорости путём переключения числа полюсов ступенчатое. При жёстких механических характеристиках двигателя, когда скольжение изменяется в небольших пределах, регулирование скорости экономичное. Следует иметь в виду, что ступени частоты вращения при частоте 50 Гц и р = 1 и 2 соответственно 3000 или 1500 об/мин, а при р = 5 и 6 – 600 и 500 об/мин. При большем числе полюсов разница между синхронными частотами вращения уменьшается.

Для изменения числа полюсов на статоре в одни и те же пазы можно уложить две отдельные обмотки с разными числами полюсов. В зависимости от необходимой частоты вращения включается одна или другая обмотка. При этом поочерёдно работают одна или другая обмотка, что снижает использование материалов. Поэтому желательно иметь одну обмотку и путём изменения схемы обмотки переключать число полюсов.

В малых машинах применяют независимые обмотки для разных чисел полюсов, в больших пользуются одной и той же обмоткой с переключением числа полюсов. Для этого можно применить любую обмотку переменного тока, сделав в ней ряд дополнительных выводов и соединений между отдельными катушками и фазами.

Роторные обмотки двигателей с переключением числа полюсов. Обычно применяют коротко – замкнутые обмотки в виде беличьего колеса, т.к. они пригодны для любого числа полюсов. С электрической точки зрения беличьё колесо представляет собой многофазную обмотку, соединенную в звезду и замкнутую накоротко. При этом обмотки всех пар полюсов соединены параллельно. В беличьем колесе число фаз m2=z2/p, где z2 – число стержней на роторе, р – число пар полюсов.

Ротор с фазными обмотками должна переключаться на разное число полюсов. Переключение числа полюсов осуществляется аналогично переключению обмотки статора.

Двигатели с изменением числа полюсов называют многоскоростными.

Возможно переключение числа пар полюсов путём изменения схемы обмотки иллюстрирует рис. 3.22: При соединении обмоток по а) получают четыре полюса, а по б) – два.

Рисунок 3.22 Переключение числа пар полюсов: а) р=2; б) р=1
а)
τ
N
S
N
N
S
б)
τ
N
S

При переключении числа полюсов полюсное деление изменяется в 2 раза, при это изменяется и электрический угол фазной зоны с 60 на 120˚. Чтобы направление вращения поля при переключении числа полюсов оставалось неизменным, необходимо изменить порядок следования фаз путём переключения обмоток. На рис. 3.23 а) приведена схема включения обмоток по схеме звезда, а на рис. 3.23 б) показано переключение обмоток статора на схему двойная звезда:

Рисунок 3.23 Схема включения обмоток статора асинхронной машины по схеме звезда а) и по схеме двойная звезда б)

При таком переключении частота вращения изменяется в 2 раза, а

момент остаётся тем же.

На рис. 3.24 приведено переключение обмоток с на , которое приводит к увеличению скорости в 2 раза, момент асинхронного двигателя снижается в 2 раза, а мощность постоянна

Рисунок 3.24 Переключение обмоток

асинхронного двигателя с а) на б)

При проектировании многоскоростных двигателей стремятся сохранить высокие энергетические показатели на всех синхронных частотах вращения. Поэтому многоскоростные машины получаются с большим расходом активных материалов на единицу мощности по сравнению с обычными асинхронными двигателя.

Несмотря на то, что многоскоростные двигатели требуют сложной коммутационной аппаратуры и имеют несколько худшие энергетические показатели, они достаточно широко применяются в промышленности для привода станков, лифтов, вентиляторов и насосов, т.е. там где допустимо ступенчатое регулирование частоты вращения.

В серии 4А предусмотрен выпуск многоскоростных асинхронных двигателей на базе односкоростных с использованием сердечника статора и ротора базовых машин на мощности 0,12 – 50 кВт на две, три и четыре синхронных частоты вращения.

Наиболее простым способом, обеспечивающим плавное регулирование частоты вращения асинхронного двигателя, является изменение скольжения. Принципиальным недостатком этого способа регулирования частоты вращения является низкий кпд, т.к. потери в роторе пропорциональны скольжению. И какие бы не предлагались варианты схем изменения скольжения, а их существует десятки, в электромеханическом преобразователе энергии преобразование в тепло и в механическую мощность имеет равные возможности. В асинхронном двигателе эта связь проявляется особенно наглядно т.к. Рэ2эм S. Эта связь не зависит от способа изменения скольжения, когда в процессе регулирования участвует одна машина.

Наиболее распространённые способы изменения скольжения в асинхронном двигателе – это изменение напряжения, введение сопротивления в цепь ротора, искажение симметрии подводимых напряжений и введение ЭДС в цепь ротора.

При изменении напряжения источника питания изменяется максимальный момент пропорционально квадрату напряжения, а критическое скольжение остаётся неизменным (Рис. 3.25). При уменьшении U1 изменяется точка устойчивой работы системы двигатель – нагрузка и изменяется скольжение от S1 до S3. Пределы регулирования зависят от вида механической характеристики двигателя и нагрузки. Чтобы расширить пределы регулирования – отношение максимальной частоты вращения к минимальной (nmax : nmin) необходимо иметь мягкую механическую характеристику двигателя, когда критическое скольжение находится в пределах 1 ÷ 3.

Читайте так же:
Триммер patriot регулировка карбюратора

Рисунок 3.25 Механические характеристики асинхронного двигателя при изменении напряжения источника тока и нагрузки Ме

Изменять частоту вращения а.д. можно, вводя активное сопротивление в цепь ротора (Рис. 3.26).

Рисунок 3.26 Механическая характеристика асинхронного двигателя при изменении сопротивления в цепи ротора и нагрузки Ме

В двигателе с фазным ротором регулировочный реостат подключается к контактным кольцам, и при изменении активного сопротивления резистора двигатель плавно или ступенчато, в зависимости от конструкции трёхфазного резистора, переходит с одной механической характеристики на другую.

Преимущество регулирования частоты вращения путём изменения активного сопротивления ротора в том, что максимальный момент остаётся неизменным, т.к. не изменяется напряжение, подводимые к двигателю. Включение резистора в обмотку ротора приводит к тому, что частично потери в роторе выделяются и в резисторе, пропорционально отношению активных сопротивлений обмотки ротора и резистора. Выведение потерь из машины даёт возможность уменьшить габариты машины.

При регулировании частоты вращения асинхронных исполнительных двигателей находит применение комбинированный способ регулирования, когда изменяют подводимое к двигателю напряжение и активное сопротивление ротора.

При изменении частоты вращения ротора, изменяется частота тока в роторе f2=Sf1. За счёт изменения f2, при этом за счёт вытеснения тока в роторе можно получить необходимый закон изменения R2. При увеличении f2 растёт активное сопротивление короткого замыкания обмотки, выполненной в виде диска, и частота вращения изменяется за счёт изменения напряжения и активного сопротивления обмотки ротора.

Регулирование напряжения на выводах двигателя осуществляется путём включения реакторов насыщения, магнитных усилителей, автотрансформаторов и тиристорных преобразователей напряжения. Последние в настоящее время получили наибольшее распространение.

Тиристорные преобразователи напряжения включают последовательно в обмотку статора двигателя (Рис. 3.27).

Через преобразователь проходит вся мощность двигателя, и габариты преобразователя несмотря на применение тиристоров в 1,5 – 2 раза больше двигателя.

Магнитные усилители в качестве регуляторов применяют реже, т.к. они имеют достаточно большие габариты.

Мощность скольжения S может быть использована или частично возвращена в сеть, если использовать дополнительно другие машины или статические преобразователи энергии.

А
В
С
Рисунок 3.27 Тиристорный преобразователь напряжения включенный в цепь статора асинхронного двигателя

Такие схемы регулирования называются каскадными (Рис. 3.28).

Рисунок 3.28 Каскадная схема регулирования скорости асинхронного двигателя

Схема (Рис. 3.28) работает следующим образом. Мощность скольжения асинхронного двигателя после выпрямления подаётся на двигатель постоянного тока (ДПТ) на валу которого находится синхронный генератор (СГ). Синхронный генератор отдаёт энергию в сеть. Недостаток наличие машины постоянного тока и силовых выпрямителей. Габариты двигателя и выпрямителей зависят от пределов регулирования.

Есть много других схем регулирования путём изменения скольжения.

Наиболее перспективный способ регулирования частоты вращения асинхронного двигателя является частотный. (Рис.3.29) изменение частоты и напряжения источника питания осуществляется преобразователем частоты (ПЧ).

Рисунок 3.29 Регулирование скорости асинхронного двигателя ПЧ.

При преобразовании частоты f1 и напряжение сети ПЧ обеспечивает работу АД при постоянном потоке, U/f = const. Регулирование экономичное, однако через преобразователь проходит вся мощность, и габариты преобразователя частоты превышают габариты двигателя.

Регулировать частоту можно в статоре или в роторе. В двигателях большой мощности удобнее регулировать частоту в роторе, т.к. мощность скольжения *S значительно меньше мощности обмотки статора. Поэтому преобразователь частоты имеет меньшие габариты. В этом случае мощность в воздушный зазор поступает со стороны статора и ротора. Такие машины получили название асинхронный двигатель двойного питания, а способ называют введением ЭДС в цепь ротора. Этот способ занимает среднее положение между частотным способом и способом изменения скольжения.

Несмотря на применение тиристоров частотный привод всё ещё не занял доминирующего положения в регулируемых приводах с асинхронным двигателем. В последнее время в связи с появлением силовых транзисторов при параллельном их соединении появилась возможность создать дешёвый малогабаритный преобразователь частоты на мощность в несколько десятков кВт. Следует иметь в виду, что введение в энергосистему нелинейных элементов(преобразователь частоты) приводит к появлению высших гармоник в сети и искажению синусоидальности напряжений. Ухудшение качества электроэнергии приводит к потерям в энергосистеме.

studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.005 с) .

Читайте так же:
Регулировка света ближних фар 2115

§81. Регулирование частоты вращения асинхронных двигателей

Рис. 266. Схема переключения катушек обмотки статора (одной фазы) для изменения числа полюсов: а — при четырех полюсах; б — при двух полюсах

Рис. 266. Схема переключения катушек обмотки статора (одной фазы) для изменения числа полюсов: а — при четырех полюсах; б — при двух полюсах

скольжение s. Последнее при заданных значениях момента на валу Мвн и частоты f1 можно изменять путем включения в цепь обмотки ротора реостата.

Регулирование путем изменения частоты питающего напряжения. Этот способ требует наличия преобразователя частоты, к которому должен быть подключен асинхронный двигатель. На основе управляемых полупроводниковых вентилей (тиристоров) созданы статические преобразователи частоты и построен ряд опытных электровозов и тепловозов с асинхронными двигателями, частота вращения которых регулируется путем изменения частоты питающего напряжения. Такой способ регулирования частоты вращения ротора асинхронного двигателя является весьма перспективным.

Регулирование путем изменения числа пар полюсов. Этот способ позволяет получить ступенчатое изменение частоты вращения. Для этой цели отдельные катушки 1, 2 и 3, 4, составляющие одну фазу (рис. 266), переключаются так, чтобы изменялось соответствующим образом направление тока в них (например, с последовательного согласного соединения на встречное). При согласном включении катушек (рис. 266, а) число полюсов равно четырем, при встречном включении (рис. 266, б) — двум. Катушки двух других фаз, сдвинутые в пространстве на 120°, соединяются таким же образом. Такое же уменьшение числа полюсов можно осуществить при переключении катушек с последовательного на параллельное соединение. При изменении числа полюсов изменяется частота вращения n1 магнитного поля двигателя, а следовательно, и частота вращения n его ротора. Если нужно иметь три или четыре частоты вращения n1, то на статоре располагают еще одну обмотку, при переключении которой можно получить еще две частоты. Существуют двигатели, которые обеспечивают изменение частоты вращения n1 при постоянном наибольшем моменте или при приблизительно постоянной мощности (рис. 267).

В асинхронном двигателе число полюсов ротора должно быть равно числу полюсов статора. В короткозамкнутом роторе это условие выполняется автоматически и при переключении обмотки статора никаких изменений в обмотке ротора выполнять не требуется.

Рис. 267. Механические характеристики двухскоростных асинхронных двигателей с постоянным наибольшим моментом (а) и постоянной мощностью (б)

Рис. 267. Механические характеристики двухскоростных асинхронных двигателей с постоянным наибольшим моментом (а) и постоянной мощностью (б)

Рис. 268. Механические характеристики асинхронного двигателя при регулировании частоты вращения путем включения реостата в цепь обмотки ротора

Рис. 268. Механические характеристики асинхронного двигателя при регулировании частоты вращения путем включения реостата в цепь обмотки ротора

Рис. 269. Схемы подключения асинхронного двигателя к сети при изменении направления его вращения

Рис. 269. Схемы подключения асинхронного двигателя к сети при изменении направления его вращения

В двигателе же с фазным ротором в этом случае надо было бы изменять число полюсов обмотки ротора, что сильно усложнило бы его конструкцию, поэтому такой способ регулирования частоты вращения используется только в двигателях с коротко-замкнутым ротором. Такие двигатели имеют большие габаритные размеры и массу по сравнению с двигателями общего применения, а следовательно, и большую стоимость. Кроме того, регулирование осуществляется большими ступенями; при частоте f1 = 50 Гц частота вращения поля n1 при переключениях изменяется в отношении 3000:1500:1000:750.

Регулирование путем включения в цепь ротора реостата. При включении в цепь обмотки ротора реостата с различным сопротивлением (Rп4, RпЗ, Rп2 и т. д.) получаем ряд реостатных механических характеристик 4, 3 и 2 двигателя. При этом некоторому нагрузочному моменту Мном (рис. 268) будут соответствовать меньшие частоты вращения n4, n3, n2 и т. д., чем частота nе при работе двигателя на естественной характеристике 1 (при Rп = 0). Это способ регулирования может быть использован только для двигателей с фазным ротором. Он позволяет плавно изменять частоту вращения в широких пределах. Недостатками его являются большие потери энергии в регулировочном реостате, поэтому его используют только при кратковременных режимах работы двигателя (при пуске и пр.).

Изменение направления вращения. Для изменения направления вращения двигателя нужно изменить направление вращения магнитного поля, создаваемого обмотками статора. Это достигается изменением порядка чередования тока в фазах обмотки статора. Например, если максимумы токов поступают в фазы обмотки статора 1 (рис. 269, а) в следующем порядке: фаза А — фаза В — фаза С, то ротор 2 двигателя будет вращаться по часовой стрелке. Если же подавать их в такой последовательности: фаза В — фаза А — фаза С, то ротор начнет вращаться против часовой стрелки. Для этой цели необходимо изменить схему соединения обмоток статора с сетью, переключив две любые фазы (провода). Например, зажим А обмотки статора, который ранее был соединен с линейным проводом Л1, нужно переключить на провод Л2, а зажим В этой обмотки, соединенный ранее с Л2, переключить на провод Л1 (рис. 269,б). Такое переключение можно осуществить обычным переключателем.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector