Taxitaxitaxi.ru

Эволюшн
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Частотный регулятор скорости для асинхронного двигателя

Частотный регулятор скорости для асинхронного двигателя

Регулировка скорости изменением величины напряжения снижает момент и также увеличивает потери мощности. Регулировка частоты вращения путем изменения числа полюсов осуществляется ступенчато, кроме того, этот способ пригоден только для специальных многоскоростных двигателей с несколькими обмотками неподвижной части.

Асинхронный двигатель – самый распространенный электропривод технологического оборудования. Главная особенность таких электрических машин – постоянная скорость вращения вала. Ее регулировку осуществляют:

  • Механическим способом. Для этого вал подключают к редукторам, муфтам и другим устройствам.
  • Путем изменения числа пар полюсов, величины или частоты питающего напряжения обмоток статора.

Механическое регулирование усложняет кинематическую схему электропривода, ведет к потерям мощности и нерациональному расходу электроэнергии.

Наиболее перспективный метод регулирования уголовной скорости ротора – преобразование частоты питающего напряжения. Этот способ обеспечивает сохранение механических характеристик во всем диапазоне и обладает рядом других преимуществ.

Устройство и принцип работы частотного регулятора

Принцип частотного регулирования основан на зависимости угловой скорости вращения ротора от частоты напряжения на обмотках статора. С появлением IGBT-транзисторов и GTO-тиристоров наибольшее распространение получила схема преобразования частоты на базе широтно-импульсного модулятора.

Такие преобразователи частоты состоят:

  • Из силового выпрямителя с С или LC фильтром для сглаживания пульсаций.
  • Из инвертора на IGBT-транзисторах для преобразования постоянного напряжения в переменное, заданной частоты и амплитуды.
  • Из блока управления для генерации отпирающих силовые транзисторы импульсов.

Переменное напряжение выпрямляется и преобразуется в постоянное, затем снова инвертируется в переменное. Частота на силовом выходе ПЧ определяется длительностью отпирающих силовые транзисторы импульсов, поступающих со схемы управления.

Такой способ регулирования позволяет изменять частоту и амплитуду напряжения в силовой цепи электродвигателя, а значит управлять скоростью вращения ротора и моментом на валу электрической машины.

Структура частотного регулятора

Большинство частотных преобразователей для электродвигателей до 690 В выполнены по схеме двухуровневых инверторов напряжения. Они позволяют моделировать напряжение питания необходимой формы, амплитуды частоты. Такие устройства состоят из неуправляемого выпрямителя, 2-х транзисторных ключей на каждую фазу и конденсатора. Выходное напряжение содержит высшие гармоники, которые сглаживаются индуктивной нагрузкой. Специальные фильтры применяют относительно редко.

К недостаткам такой схемы является ограничение величины выходного напряжения, которое определяется максимальным напряжением полупроводниковых устройств.

Для высоковольтных приводов используются многоуровневые схемы регулирования. Они состоят из нескольких однофазных инверторов, соединенных последовательно. Такая схема позволяет избежать резонансов, обеспечивает высокое быстродействие, снижает скорость нарастания напряжения. Такие ПЧ имеют модульную конструкцию. При выходе из строя одной из ячеек, ее легко заменить. К недостаткам этой схемы относятся необходимость отдельного источника питания для каждого модуля, функции которого выполняет трансформатор специального назначения.

Преобразователи частоты с плавающими конденсаторами позволяют обойтись без входного трансформатора и увеличивать число ячеек в зависимости от требуемой мощности. Такое решение обеспечивает снижение высших гармоник, уменьшает скорость нарастания напряжения.

Для регулировки скорости электродвигателей с повторно-кратковременным режимом работы частыми реверсами применяют инверторы тока. Эти устройства представляют собой управляемый выпрямитель и инвертор на тиристорах. Для уменьшения помех в цепи нагрузки в схему включается расщепленный индуктивный фильтр. Выходное напряжение таких устройств имеет форму аппроксимированной синусоиды. Для сглаживания его формы обязательно включение перед электродвигателем конденсаторов. Главное достоинство таких ПЧ – возможность рекуперации электроэнергии обратно в электросеть.

Прямые преобразователи частоты не содержат конденсаторов. Главное их преимущество – небольшие габариты и значительная мощность нагрузки. Такие устройства используются в составе мощных электроприводов работающих на низких скоростях. ПЧ этого типа выполнены на базе тиристорных преобразователей. На входе прямых ПЧ установлен фазосдвигающий трансформатор, устраняющий низшие гармоники и выполняющий функцию источника питания для каждого преобразователя. Прямые ПЧ требуют сложной схемы управления.

Состав частотных преобразователей

Кроме выпрямителя, ШИМ-модулятора и инвертора, в состав частотного преобразователя входят:

Устройство для ввода данных и обмена информаций с ПК, другими частотными преобразователями.

  • Встроенная энергонезависимая память. В этом устройстве фиксируются аварийные отключения, изменения настроек, а также другие данные.
  • Управляющий контроллер, обеспечивающий реализацию алгоритмов управления, обработку данных с датчиков, защитное отключение при ненормальных режимах работы.
  • ЭМ-фильтр. Это устройство обеспечивает снижение реактивной высокочастотной составляющей, снижающей качество электроэнергии и отрицательно влияющей на работу электродвигателя.
  • Вентилятор и радиатор для принудительного охлаждения и отвода тепла силовых транзисторов.
  • Тормозной прерыватель и другие элементы.

Кроме аппаратной части, преобразователи частоты содержат программное обеспечение. Контроллеры с открытой логикой позволяют вносить изменения в стандартное ПО, поставляемое производителем, и самостоятельно программировать ПЧ.

Однофазные преобразователи частоты

Однофазные асинхронные электродвигатели широко применяются в качестве приводов насосных агрегатов, вентиляторов, маломощных станков. Для регулирования частоты вращения этих электрических машин применяются 2 основных способа:

  • Изменение величины напряжения питания.
  • Изменение частоты питающего напряжения.

Для регулирования питающего напряжения применяются трансформаторные, автотрансформаторные, тиристорные, симисторные и транзисторные преобразователи. Изменение частоты вращения путем регулирования напряжения имеет ряд серьезных недостатков:

  • Увеличение скольжения и сильный нагрев обмоток статора.
  • Узкий диапазон регулирования.
Читайте так же:
Как отрегулировать главную пару в коробке

Кроме того, постоянная составляющая питающего напряжения на выходе тиристорных и симисторных устройств вызовает увеличение шума при работе, рывки и другие нежелательные явления.

Частотное регулирование лишено этих недостатков. Однофазные ПЧ применяются в холодильном оборудовании, системах вентиляции, бытовых насосах.

Такие электроприводы обеспечивают:

  • Стабильную работу однофазного двигателя при любой частоте вращения.
  • Снижение потребления электроэнергии.
  • Возможность автоматической регулировки частоты вращения с обратной связью по изменению одного или нескольких технологических параметров.
  • Удаленное управление и контроль характеристик.
  • Защиту от ненормальных режимов работы и коротких замыканий.
  • Интеллектуальное управление электродвигателем в соответствии с заданным алгоритмом.
  • Возможность пуска без фазосдвигающего элемента.
  • Поддержание необходимого момента на валу во всем диапазоне изменения скорости.

Кроме базовых составляющих, в состав однофазного преобразователя частоты входят ПИД-регулятор, ПЛК-контроллер, устройство для обмена данными с удаленным оборудованием, пульт дистанционного управления. При введении дополнительных настроек допустимо применение трехфазного ПЧ для однофазных двигателей переменного тока.

Таким образом, управление однофазными и трехфазными асинхронными электродвигателями путем изменения частоты значительно превосходит метод регулирования величины напряжения, механические способы.

Регулирование скорости асинхронного двигателя

Долгое время в промышленности использовались нерегулируемые электроприводы на базе АД, но, в последнее время возникла надобность в регулировании скорости асинхронных двигателей.

Частота вращения ротора равна

При этом, синхронная частота вращения зависит от частоты напряжения и числа пар полюсов

Исходя из этого, можно сделать вывод, что регулировать скорость АД можно с помощью изменения скольжения, частоты и числа пар полюсов.

Рассмотрим основные способы регулировки.

Регулирование скорости с помощью изменения активного сопротивления в цепи ротора

Этот способ регулирования скорости применим в двигателях с фазным ротором. При этом в цепь обмотки ротора включается реостат, которым можно плавно увеличивать сопротивление. С увеличением сопротивления, скольжение двигателя растёт, а скорость падает. Таким образом, обеспечивается регулировка скорости вниз от естественной характеристики.

Недостатком данного способа является его неэкономичность, так как при увеличении скольжения, потери в цепи ротора растут, следовательно, КПД двигателя падает. Плюс к этому, механическая характеристика двигателя становится более пологой и мягкой, из-за чего небольшое изменение момента нагрузки на валу, вызывает большое изменение частоты вращения.

Регулирование скорости данным способом не эффективно, но, несмотря на это применяется в двигателях с фазным ротором.

Регулирование скорости двигателя с помощью изменения напряжения питания

Данный способ регулирования можно осуществить, если включить в цепь автотрансформатор, перед статором, после питающих проводов. При этом, если снижать напряжение на выходе автотрансформатора, то двигатель будет работать на пониженном напряжении. Это приведёт к снижению частоты вращения двигателя, при постоянном моменте нагрузки, а также к снижению перегрузочной способности двигателя. Это связано с тем, что при уменьшении напряжения питания, максимальный момент двигателя уменьшается в квадрат раз. Кроме того, этот момент уменьшается быстрее, чем ток в цепи ротора, а значит, растут и потери, с последующим нагревом двигателя.

Способ регулирования изменением напряжения, возможен только вниз от естественной характеристики, так как увеличивать напряжение выше номинального нельзя, потому что это может привести к большим потерям в двигателе, перегреву и выходу его из строя.

Кроме автотрансформатора, можно использовать тиристорный регулятор напряжения.

Регулирование скорости с помощью изменения частоты питания

При данном способе регулирования, к двигателю подключается преобразователь частоты (ПЧ). Чаще всего это тиристорный преобразователь частоты. Регулирование скорости осуществляется изменением частоты напряжения f, так как она в данном случае влияет на синхронную скорость вращения двигателя.

При снижении частоты напряжения, перегрузочная способность двигателя будет падать, чтобы этого не допустить, требуется повысить величину напряжения U1. Значение на которое нужно повысить, зависит от того какой привод. Если регулирование производится с постоянным моментом нагрузки на валу, то напряжение нужно изменять пропорционально изменению частоты (при снижении скорости). При увеличении скорости этого делать не следует, напряжение должно оставаться на номинальном значении, иначе это может причинить вред двигателю.

Если регулирование скорости производится с постоянной мощностью двигателя (например, в металлорежущих станках), то изменение напряжения U1 необходимо производить пропорционально квадратному корню изменения частоты f1.

При регулировании установок с вентиляторной характеристикой, необходимо изменять подводимое напряжение U1 пропорционально квадрату изменения частоты f1.

Регулирование с помощью изменения частоты, является наиболее приемлемым вариантом для асинхронных двигателей, так как при нем обеспечивается регулирование скорости в широком диапазоне, без значительных потерь и снижения перегрузочных способностей двигателя.

Регулирование скорости АД изменением числа пар полюсов

Такой способ регулирования возможен только в многоскоростных асинхронных двигателях с короткозамкнутым ротором, так как число полюсов этого ротора, всегда равно количеству полюсов статора.

В соответствии с формулой, которая рассматривалась выше, скорость двигателя можно регулировать изменением числа пар полюсов. Причём, изменение скорости происходит ступенчато, так как количество полюсов принимают только определённые значения – 1,2,3,4,5.

Изменение количества полюсов достигается переключением катушечных групп статорной обмотки. При этом катушки соединяются различными схемами соединения, например “звезда — звезда” или “звезда – двойная звезда”. Первая схема соединения даёт изменение количества полюсов в соотношении 2:1. При этом обеспечивается постоянная мощность двигателя при переключении. Вторая схема изменяет количество полюсов в таком же соотношении, но при этом обеспечивает постоянный момент двигателя.

Читайте так же:
Регулировка рычага переключения передач акцент

Применение данного способа регулирования оправдано сохранением КПД и коэффициента мощности при переключении. Минусом же является более сложная и увеличенная конструкция двигателя, а также увеличение его стоимости.

Регулирование скорости асинхронного двигателя

Наиболее распространены следующие способы регулирования скорости асинхронного двигателя : изменение дополнительного сопротивления цепи ротора, изменение напряжения, подводимого к обмотке статора, двигателя изменение частоты питающего напряжения, а также переключение числа пар полюсов.

Электрический двигатель

Регулирование частоты вращения асинхронного двигателя путем введения резисторов в цепь ротора

Введение резисторов в цепь ротора приводит к увеличению потерь мощности и снижению частоты вращения ротора двигателя за счет увеличения скольжения, поскольку n = n о (1 — s).

Из рис. 1 следует, что при увеличении сопротивления в цепи ротора при том же моменте частота вращения вала двигателя уменьшается.

Жесткость механических характеристик значительно снижается с уменьшением частоты вращения, что ограничивает диапазон регулирования до (2 — 3) : 1. Недостатком этого способа являются значительные потери энергии, которые пропорциональны скольжению. Такое регулирование возможно только для двигателя с фазным ротором.

Регулирование скорости асинхронного двигателяРегулирование частоты вращения асинхронного двигателя изменением напряжения на статоре

Изменение напряжения, подводимого к обмотке статора асинхронного двигателя , позволяет регулировать скорость с помощью относительно простых технических средств и схем управления. Для этого между сетью переменного тока со стандартным напряжением U 1ном и статором электродвигателя включается регулятор напряжения .

При регулировании частоты вращения асинхронного двигателя изменением напряжения, подводимого к обмотке статора, критический момент М кр асинхронного двигателя изменяется пропорционально квадрату подводимого к двигателю напряжения U рет (рис. 3 ), а скольжение от U рег не зависит.

Механические характеристики асинхронного двигателя с фазным ротором при различных сопротивлениях резисторов, включенных в цепь ротора

Рис. 1. Механические характеристики асинхронного двигателя с фазным ротором при различных сопротивлениях резисторов, включенных в цепь ротора

Схема регулирования скорости асинхронного двигателя путем изменения напряжения на статоре

Рис. 2. Схема регулирования скорости асинхронного двигателя путем изменения напряжения на статоре

Механические характеристики асинхронного двигателя при изменении напряжения подводимого к обмоткам статора

Рис. 3. Механические характеристики асинхронного двигателя при изменении напряжения подводимого к обмоткам статора

Если момент сопротивления рабочей машины больше пускового момента электродвигателя (Мс > Мпуск), то двигатель не будет вращаться, поэтому необходимо запустить его при номинальном напряжении Uном или на холостом ходу.

Регулировать частоту вращения короткозамкнутых асинхронных двигателей таким способом можно только при вентиляторном характере нагрузки. Кроме того, должны использоваться специальные электродвигатели с повышенным скольжением. Диапазон регулирования небольшой, до n кр.

Для изменения напряжения применяют трехфазные автотрансформаторы и тиристорные регуляторы напряжения.

Схема замкнутой системы регулирования скорости тиристорный регулятор напряжения - асинхронный двигатель (ТРН - АД)

Рис. 4. Схема замкнутой системы регулирования скорости тиристорный регулятор напряжения — асинхронный двигатель (ТРН — АД)

Замкнутая схема управления асинхронным двигателем , выполненным по схеме тиристорный регулятор напряжения — электродвигатель позволяет регулировать скорость асинхронного двигателя с повышенным скольжением (такие двигатели применяются в вентиляционных установках).

Регулирование частоты вращения асинхронного двигателя изменением частоты питающего напряжения

Так как частота вращения магнитного поля статора n о = 60 f /р, то регулирование частоты вращения асинхронного двигателя можно производить изменением частоты питающего напряжения.

Регулирование частоты вращения асинхронного двигателя изменением частоты питающего напряженияПринцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что, изменяя частоту питающего напряжения, можно в соответствии с выражением при неизменном числе пар полюсов р изменять угловую скорость n о магнитного поля статора.

Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.

Для получения высоких энергетических показателей асинхронных двигателей (коэффициентов мощности, полезного действия, перегрузочной способности) необходимо одновременно с частотой изменять и подводимое напряжение. Закон изменения напряжения зависит от характера момента нагрузки Мс. При постоянном моменте нагрузки напряжение на статоре должно регулироваться пропорционально частоте.

Схема частотного электропривода приведена на рис. 5, а механические характеристики АД при частотном регулировании — на рис. 6.

Схема частотного электропривода

Рис. 5. Схема частотного электропривода

Механические характеристики асинхронного двигателя при частотном регулировании

Рис. 6. Механические характеристики асинхронного двигателя при частотном регулировании

С уменьшением частоты f критический момент несколько уменьшается в области малых частот вращения. Это объясняется возрастанием влияния активного сопротивления обмотки статора при одновременном снижении частоты и напряжения.

Частотное регулирование скорости асинхронного двигателя позволяет изменять частоту вращения в диапазоне (20 — 30) : 1. Частотный способ является наиболее перспективным для регулирования асинхронного двигателя с короткозамкнутым ротором. Потери мощности при таком регулировании невелики, поскольку минимальны потери скольжения.

частотные преобразователиБольшинство современных преобразователей частоты построено по схеме двойного преобразования. Они состоят из следующих основных частей: звена постоянного тока (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.

Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока.

Силовой трехфазный импульсный инвертор содержит шесть транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.

Читайте так же:
Как регулировать обороты кулера видеокарты nvidia

В выходных каскадах инвертора в качестве ключей используются силовые IGBT-транзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями. Регулирование выходной частоты I вых и выходного напряжения осуществляется за счет высокочастотной широтно-импульсной модуляции.

Регулирование частоты вращения асинхронного двигателя переключение числа пар полюсов

Ступенчатое регулирование скорости можно осуществить, используя специальные многоскоростные асинхронные двигатели с короткозамкнутым ротором.

Из выражения n о = 60 f /р следует, что при изменении числа пар полюсов р получаются механические характеристики с разной частотой вращения n о магнитного поля статора. Так как значение р определяется целыми числами, то переход от одной характеристики к другой в процессе регулирования носит ступенчатый характер.

Существует два способа изменения числа пар полюсов. В первом случае в пазы статора укладывают две обмотки с разным числом полюсов. При изменении скорости к сети подключается одна из обмоток. Во втором случае обмотку каждой фазы составляют из двух частей, которые соединяют параллельно или последовательно. При этом число пар полюсов изменяется в два раза.

Схемы переключения обмоток асинхронного двигателя: а - с одинарной звезды на двойную; б - с треугольника на двойную звезду

Рис. 7. Схемы переключения обмоток асинхронного двигателя: а — с одинарной звезды на двойную; б — с треугольника на двойную звезду

Регулирование скорости путем изменения числа пар полюсов экономично, а механические характеристики сохраняют жесткость. Недостатком этого способа является ступенчатый характер изменения частоты вращения асинхронного двигателя с короткозамкнутым ротором. Выпускаются двухскоростные двигатели с числом полюсов 4/2, 8/4, 12/6. Четырехскоростной электродвигатель с полюсами 12/8/6/4 имеет две переключаемые обмотки.

Использованы материалы книги Дайнеко В.А., Ковалинский А.И. Электрооборудование сельскохозяйственных предприятий.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Двигатель однофазный асинхронный регулировка скорости

Эта статья будет посвящена двигателям — возможности регулировки скорости вращения, запускам и торможению.

Однофазные конденсаторные электродвигатели отличаются от однофазных асинхронных электродвигателей с пусковой обмоткой и конденсаторным пуском тем, что рабочая и фазосдвигающая (конденсаторная) обмотки создают вращающееся магнитное поле как в момент пуска, так и при работе электродвигателя. Обе обмотки рассчитаны на длительный режим работы.
Одна из схем регулятора скорости для однофазного конденсаторного двигателя показана на рис.1.
Действие данного регулятора скорости вращения основано на зависимости скорости вращения от величины постоянного тока через фазосдвигающую (конденсаторную) обмотку. Выпрямленное диодом VD1 напряжение через резисторы R1, R2, R3 подается на фазосдвигающую обмотку.
Фазосдвигающий конденсатор служит одновременно для фильтрации выпрямленного напряжения, величину которого регулируют подстроечным резистором R1.
Минимальная скорость вращения зависит от надежного запуска двигателя и выставляется резистором R2. Для этого необходимо отключить двигатель, вывести резистор R1 в положение максимального сопротивления, а на место R2 временно установить переменный резистор на 2-3кОм. Желательно тоже вывести в максимальное положение. Включить в сеть и резистором R2 установить минимально возможные обороты. Далее выключить его на небольшое время и попытаться его запустить с выставленным таким способом сопротивлением R2. Если самостоятельного пуска не происходит — уменьшить еще немного сопротивление R2. Пробовать до тех пор, пока не произойдет самостоятельного надежного пуска. После этого можно измерть значение R2 и заменить его постоянным резистором. Если двигатель очень малой мощности, можно уменьшить значение R1.
Рекомендуемые детали : Резистор R1 типа ППЕ-3В или ППБ-15Е; R1 и R2 — ПЭВ-7,5; VD1 — КД227Ж или с похожими параметрами; С1 — штатный конденсатор данного двигателя.

На рис.3 показана схема пускового устройства, которое может быть использовано в электроприводах общепромышленных механизмов. Данное техническое решение зазищено авторскими правами*.
При включении электродвигателя выключателем SA1 начинает протекать ток в двух цепях — через рабочую обмотку Р, а также по цепи: SA1 → пусковая обмотка П → верхний правый диод моста → параллельную цепочку R1C1 → R2 → переход база-эмиттер тарнзистора VT1 → нижний левый диод моста → сеть. В результате транзистор открывается и пусковая обмотка П обтекается переменным током. Конденсатор С1 обеспечивает фазовый сдвиг между токами в пусковой П и рабочей Р обмотках, в результате чего двигатель запускается. Одновременно конденсатор С1 заряжается и закрывает транзистор VT1. В результате пусковая обмотка П обестачивается и двигатель из режима пуска переходит в рабочий режим.
Электронное управление пуском позволяет снизить ток пусковой обмотки, что повышает надежность электродвигателя. При этом улучшаются массогабаритные показатели устройства за счет уменьшения величины емкости конденсатора, через который протекает небольшой по величине ток управления транзистора. Рекомендуемая мощность двигателя для приведенной схемы — до 600Вт.
Рекомендуемые детали : выключатель SA1 — любой, подходящий по мощности; выпрямительный мост — диодные сборки КЦ402А, Б — КЦ405А, Б на напряжение 500. 600В и ток 1А либо четыре диода КД202 с индексами М, Н, Р. Конденсатор С1 — электролитический емкостью 10. 15мкФ на 400В. Диод VD2 желательно Д7Г, Д, Е, Ж. В крайнем случае подойдет Д226Б или КД226. Резистор R1 — МЛТ-1 номиналом 50. 100кОм, R2 — МЛТ-1 номиналом 500Ом. Транзистор VT1 подойдет типа КТ809А на ток 3А и напряжение 400В.

Читайте так же:
Как отрегулировать зажигание у мотособаки

* Авторское свидетельство СССР №1385214, кл. 1/42, заявл. 13.05.86

Запуск 3-х фазного двигателя

пуск двигателя треугольником

Иногда целесообразно при запуске 3-х фазных асинхронных двигателей использовать сборку электролитических конденсаторов (соединенных отрицательными выводами) с диодами. С диодами конденсаторы работают в облегченном режиме и меньше греются. Поэтому применение диодов желательно. При комплектовании сборки следует помнить, что общая емкость двух одинаковых конденсаторов, соединенных последовательно (рис.4) становится вдвое меньше. При этом рабочее напряжение распределится между ними пополам, т.е. тепловая нагрузка на них будет меньше, что продлит им срок службы. Также для продления ресурса можно использовать RD-цепочку, как на рис.3. Например, из диода Д1 типа Д226Б и резистора R1 номиналом 50. 100кОм и мощностью 0,5. 1Вт. Например, МЛТ-0.5, а лучше МЛТ-1. При запуске RD-цепочка шунтируется пусковой кнопкой и после разгона двигателя электролиты заряжаются и восстанавливают свой оксидный слой.
Комплектовать сборку из последовательно соединенных конденсаторов нужно двумя одинаковыми по емкости и напряжению электролитическими конденсаторами. При этом условии сборка прослужит дольше. А вот при параллельном соединении электролитов в пусковую батарею (рис.5) емкость может быть и разной, а вот напряжение конденсаторов должно быть одинаковым, иначе с более низким будет греться и быстро выйдет из строя. И еще: правильно выбирайте схему соединения обмоток двигателя. Это часто приходиться делать оопытным путем. Если соединение "треугольником" не позволяет разогнать двигатель, можно попробовать применить схему "разорванная звезда" (рис.7).

* с использованием материала статьи Ю.А.Сытник "Использование сборки конденсаторов для запуска электродвигателя"

Схемы торможения 3-х фазных асинхронных двигателей

Данное устройство торможения имеет авторское свидетельство СССР №1295495 кл. Н 02 Р3/24, 1987.
Рассматриваемый электропривод содержит два асинхронных двигателя, контакты КМ1 линейного контактора. Одни выводы его подключены к 3-х фазной сети, другие подключены к соединенным пофазно статорным обмоткам обоих асинхронных двигателей. Вторые концы двигателя №1 подключены к катодам диодов VD1 — VD3, а вторые концы двигателя №2 — к анодам диодов VD4 — VD6. Между собою аноды первой тройки диодов и катоды второй тройки соединены через резистор R. Кроме этого, вторые концы каждого двигателя подключены к контактам других контакторов КМ2 — КМ5. При такой схеме торможения необходимо, конечно же, чтобы все шесть концов трех обмоток статора были выведены для подключения. При подаче питания через КМ1 должны одновременно замыкаться контакты остальных контакторов. Они зашунтируют диоды, образуя питание обоих двигателей по схеме соединения обмоток "звездой". Режим торможения должен быть спроектирован так, чтобы при выключении электропривода контактор КМ1 оставался какое-то время включенным, а контакты КМ2 — КМ5 разомкнулись. Тогда через обмоки статоров обоих двигателей потечет выпрямленный однополупериодный ток. В результате двигатели тормозятся, а эффективность этого торможения зависит от величины тока через обмотки статоров, который регулируется сопротивлением R. С его помощью устанавливается максимально допустимый ток, что, разумеется, повышает долговечность работы устройства. Режим торможения прекращается при выключении и размыкании контактов КМ1. Время торможения и выключения КМ1 надо согласовать. При окончании торможения контактор КМ1 не должен быть включен.

На рис.9 и рис.10 представлена еще одна схема торможения асинхронного 3-х фазного двигателя. Эта схема обеспечивает торможение любого двигателя до 3кВт в течение 6 секунд. Эту схему мы лично составили и испытывали на производстве со всеми асинхронными 3-х фазными двигателями до 3кВт включительно. Сама схема включения в работу двигателя и его торможения проста и представлена на рис.10. В работу двигатель включается подачей питающего напряжения через контакты контактора К1. Режим торможения осуществляется подачей однополупериодного выпрямленного диодом VD1 напряжения на статор двигателя. Причем одна фаза подается на одну обмотку, а другая на оставшиеся две, которые в режиме торможения соединяются между собою контактами К2.2 и К2.3 контактора К2. Одна из фаз не используется. Сразу, оговоримся, что, если две оставшиеся обмотки не объединить между собою контактами К2.2 и К2.3, а подать вторую фазу только на одну обмотку — торможения не получится. Поэтому для 3-х фазных двигателей там, где общая точка соединения трех обмоток не доступна по конструктивным причинам их намотки, т.е. не выведена наружу, необходимо соединить в режиме торможения две обмотки. А вот на тех двигателях, где общая точка выведена наружу и доступна для монтажа, рекомендуется выпрямленное напряжение подать на две любые обмотки, а третью закоротить контактом контактора К2. Такое решение показано на рис.11.

А вот схема подключения кнопочного поста управления режимами двигателя немного посложнее. Здесь выполнена защита от возможности включения сразу двух режимов во избежании неприятных последствий. Рассмотрим поконкретнее. Схема управления пусковой катушкой К1 почти стандартная за исключением "врезанного" в цепь ее управления нормально замкнутого контакта К2.4 от катушки торможения К2. Он защищает двигатель от включения пускового режима, пока идет процесс торможения и катушка К2 включена. Пока она будет включена, контакт К2.4 будет разомкнут вместе со стоповой кнопкой SB1. Но начнем по порядку.
В исходном состоянии станок выключен и обе управляющие катушки без напряжения. В это время состояние всех нормально открытых, т.е. разомкнутых контактов (далее просто НО) и нормально замкнутых (далее просто НЗ) обеих катушек соответствует показанному на схеме рис.9.
При нажатии кнопки SB2 "ПУСК" начинает поступать напряжение через замкнутый контакт кнопки SB1 "СТОП", далее через пока еще нажатую кнопку SB2 "ПУСК" и далее через НЗ контакт К2.4 обесточенной катушки торможения К2 на катушку контактора К1. Второй конец катушки запитан, разумеется, напрямую. Как только катушка К1 встанет под ток, ее контакт К1.4 "обойдет", т.е. зашунтирует пусковую кнопку SB2 и ее отпускание уже никак не влияет на процесс — двигатель запущен и получает питание 3-х фазной сети через силовые контакты К1.1, К1.2 и К1.3 контактора К1. При этом цепь питания тормозного контактора К2 разорвана НО контактом SB1.2 кнопки "СТОП" и разомкнувшимся контактом К1.5 вставшей под ток пусковой катушки К1.
При необходимости выключить и затормозить двигатель нажимается кнопка SB1 "СТОП". При этом своим НЗ контактом SB1.1 она обрывает цепь питания пускового контактора К1 и замыкает свой НО контакт SB1.2, подготавливая цепь питания контактора К2. В тот момент, когда контактор К1 по факту отключится, его контакт К1.5 до конца замкнет цепь питания К2. Таким образом, назначение контакта К1.5 — это блокировка подачи выпрямленного через диод VD1 напряжения при нажатой кнопке "СТОП" и возможной задержке отпадания силовых контактов К1.1, К1.2 и К1.3 контактора К1 (например, их залипании).
И в заключение необходимо отметить, что используемый в схеме диод применялся типа ВЛ-50.

Читайте так же:
На каком пробеге регулировать клапаны субару

Устройство для динамического торможения конденсаторного электродвигателя

схема торможения конденсаторного электродвигателяПредставленная схема устройства по авторскому свидетельству №1023598, КЛ. НО2р 3/24, 15.06.83 предназначена для динамического торможения асинхронного конденсаторного электродвигателя с короткозамкнутым ротором малой мощности, которое обеспечивает его автоматическое торможение при отключении от сети путем кратковременного протекания пульсирующего тока по его обмоткам.
Устройство содержит переключатель SA1, с помощью которого подключается к питающей сети главная обмотка Г и вспомогательная В через фазосдвигающий конденсатор С1. Контакты 1-5 переключателя SA1 в цепи главной обмотки электродвигателя шунтированы последовательной цепочкой из диода VD1 и электролитического конденсатора С2. Конденсатор шунтирован резистором R через контакты 3-4 переключателя SA1, которые соединены последовательно с резистором R. Точка соединения фазосдвигающего конденсатора С1 и вспомогательной обмотки В соединена с выводом 2 переключателя SA1.
В исходном (предпусковом положении) фазосдвигающий конденсатор С1 шунтирован контакты 1-2 переключателя SA1, а его контакты 3-4 в цепи резистора разомкнуты.
Устройство работает следующим образом. При включении электродвигателя с помощь контактов 1-5 переключателя SA1 обтекается током главная и вспомогательная обмотки через конденсатор С1. При этом контакты 3-4 переключателя SA1 шунтируют резистором конденсатор С2. Электродвигатель запускается. Цепочка из диода, резистора и конденсатора С2 шунтируется включенными контактами 1-5 переключателя SA1 и на работу не влияет.
При отключении конденсаторного электродвигателя от сети контактами 1-5 переключателя SA1 размыкаются его контакты 3-4 в цепи резистора, контактами 1-2 шунтируется фазосдвигающий конденсатор С1, а главная обмотка Г и вспомогательная В, соединенные параллельно, обтекаются выпрямленным однополупериодным током сети через элементы VD1 и С2, в результате чего происходит торможение электродвигателя. По окончании заряда конденсатора С2 диод VD1 запирается им, в результате чего ток по обмотка Г и В прекращается. Повторный запуск двигателя вызывает разряд конденсатора С2 на резистор R через замкнутые контакты 3-4 переключателя SA1, и схема готова к новомй циклу торможения.
В устройстве в качестве переключателя SA1 можно использовать любой, подходящий по току и напряжению. Тип диода VD1 и конденсатора С2 определяются мощностью электродвигателя. для двигателя мощностью до 0,6кВт в качестве диода VD1 можно использовать диод типа КД 227Ж на ток 5А и напряжение 800В или 2Д203Г, 2Д203Д на 10А и 700В, а также диоды В10-10. В10-14 на ток 10А и напряжение от 700В и выше. Подойдут и любые другие на указанные ток и напряжение. Возможно использование диодов старой серии на ток не ниже 5А, включив из по два последовательно, например, Д232..Д234 или Д246..Д248 с любым буквенным индексом. В этом случае диоды необходимо шунтировать резисторами типа МЛТ-1 сопротивлением 150..200кОм. Конденсаторо С2 — электролитический на напряжение не менее 400В. Емкость его определяют экспериментально для получения требуемого времени торможения. Разрядный резистор типа МЛТ-2 сопротивлением 150. 200кОм.
"Электрик", 2005г, №5

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector